
Sourcery G++ Lite

ARM uClinux

Sourcery G++ Lite 2008q1-126

Getting Started

1

Sourcery G++ Lite: ARM uClinux: Sourcery G++ Lite 2008q1-
126: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008 CodeSourcery, Inc.
All rights reserved.

2

Sourcery G++ Lite

Preface
This preface introduces Getting Started With Sourcery G++ Lite. It explains the structure
of this guide and lists other sources of information that relate to Sourcery G++ Lite.

iii

1. Intended Audience
This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, Sourcery G++ Lite Li-
censes

This chapter provides information about the software licenses
that apply to Sourcery G++ Lite. Read this chapter to under-
stand your legal rights and obligations as a user of Sourcery
G++ Lite.

Chapter 2, Sourcery G++ Subscrip-
tions

This chapter provides information about Sourcery G++ sub-
scriptions. CodeSourcery customers with Sourcery G++ sub-
scriptions receive comprehensive support for Sourcery G++.
Read this chapter to find out how to obtain and use a Sourcery
G++ subscription.

Chapter 3, Sourcery G++ Lite for
ARM uClinux

This chapter provides information about this release of
Sourcery G++ Lite including any special installation instruc-
tions, recent improvements, or other similar information. You
should read this chapter before building applications with
Sourcery G++ Lite.

Chapter 4, Installation and Configur-
ation

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

Chapter 5, Using Sourcery G++
from the Command Line

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

Chapter 6, Sourcery G++ Debug
Sprite

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite is provided for debug-
ging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and
boards supported by the Sprite for ARM uClinux.

Chapter 7, Next Steps with Sourcery
G++

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

iv

Preface

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

v

Preface

Chapter 1
Sourcery G++ Lite Licenses
Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are "free" or "open source" software, while other components are proprietary. This chapter
explains what licenses apply to your use of Sourcery G++ Lite.You should read this chapter
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

1

1.1. Licenses for Sourcery G++ Lite Compon-
ents
The table below lists the major components of Sourcery G++ Lite for ARM uClinux and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0 1GNU Binary Utilities

GNU General Public License 3.0 2GNU Compiler Collection

GNU General Public License 3.0 3GNU Debugger

GNU Lesser General Public License 2.1 4uClibc C Library

GNU General Public License 2.0 5Linux Kernel

GNU General Public License 2.0 6ELF-to-FLT Conversion Utility

CodeSourcery LicenseSourcery G++ Debug Sprite for ARM

GNU General Public License 2.0 7GNU Make

GNU General Public License 2.0 8GNU Core Utilities

The CodeSourcery License is available in Section 1.2, “Sourcery G++™ Software License Agree-
ment”.

Important

Although some of the licenses that apply to Sourcery G++ Lite are "free software" or "open
source software" licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

1.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee ("You" or "Licensee") and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then "You" means
Your company or organization.

1 http://www.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
6 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
7 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
8 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

2

Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the "Software").

3. Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a "free software" or "open
source" license, such as the GNU Public License. The CodeSourcery Proprietary Com-
ponents of the Software include, without limitation, the Sourcery G++ Installer, any
Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the "Getting Started Guide" included with this distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a "free software" or "open source" license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license to install and use the CodeSourcery Proprietary Components of the
Software, transmit the CodeSourcery Proprietary Components over an internal computer network,
and/or copy the CodeSourcery Proprietary Components for Your internal use only.

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party; or (iii) reverse engineer, decompile,
or disassemble the CodeSourcery Proprietary Components of the Software, except to the extent
this restriction is expressly prohibited by applicable law.

6. "Free Software" or "Open Source" License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. For a list
of which license applies to each component, refer to the "Getting Started Guide" included with
this distribution.

7. CodeSourcery Trademarks. Notwithstanding any provision in a "free software" or "open
source" license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to

3

Sourcery G++ Lite Licenses

any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE "AS-IS" AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries

4

Sourcery G++ Lite Licenses

other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a "commercial item," as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial computer software" and "commercial
computer software documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: "The parties confirm that this Agreement and all related documentation is and will
be in the English language."); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association ("AAA") then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without

5

Sourcery G++ Lite Licenses

their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

6

Sourcery G++ Lite Licenses

Chapter 2
Sourcery G++ Subscriptions
CodeSourcery provides support contracts for Sourcery G++. This chapter describes these
contracts and explains how CodeSourcery customers can access their support accounts.

7

2.1. About Sourcery G++ Subscriptions
CodeSourcery offers Sourcery G++ subscriptions. Professional Edition subscriptions provide unlimited
support, with no per-incident fees. CodeSourcery's support covers questions about installing and
using Sourcery G++, the C and C++ programming languages, and all other topics relating to Sourcery
G++. CodeSourcery provides updated versions of Sourcery G++ to resolve critical problems. Personal
Edition subscriptions do not include support, but do include free upgrades as long as the subscription
remains active.

CodeSourcery's support is provided by the same engineers who build Sourcery G++. A Sourcery
G++ subscription is like having a team of compiler engineers and programming language experts
available as consultants!

Subscription editions of Sourcery G++ also include many additional features not included in the free
Lite editions:

• Sourcery G++ IDE. The Sourcery G++ IDE, based on Eclipse, provides a fully visual envir-
onment for developing applications, including an automated project builder, syntax-highlighting
editor, and a graphical debugging interface. The debugger provides features especially useful to
embedded systems programmers, including the ability to step through code at both the source
and assembly level, view registers, and examine stack traces. CodeSourcery's enhancements to
Eclipse include improved support for hardware debugging via JTAG or ICE units and complete
integration with the rest of Sourcery G++.

• Debug Sprites. Sourcery G++ Debug Sprites provide hardware debugging support using
JTAG and ICE devices. On some systems, Sourcery G++ Sprites can automatically program
flash memory and display control registers. And the board initialization performed by each Sprite
can be customized with simple XML-based configuration files to insert delays and write to par-
ticular memory addresses. Debug Sprites included in Lite editions of Sourcery G++ include only
a subset of the functionality of the Sprites in the subscription editions.

• QEMU Instruction Set Simulator. The QEMU instruction set simulator can be used to run
— and debug — programs even without target hardware. Most bare-metal configurations of
Sourcery G++ include QEMU and linker scripts targeting the simulator. Configurations of
Sourcery G++ for GNU/Linux targets include a user-space QEMU emulator that runs on Linux
hosts.

• Sysroot Utilities. Subscription editions of Sourcery G++ include a set of sysroot utilities for
GNU/Linux targets. These utilities simplify use of the Sourcery G++ dynamic linker and shared
libraries on the target and also support remote debugging with gdbserver.

• CS3. CS3 provides a uniform, cross-platform approach to board initialization and interrupt
handling on ARM EABI, ColdFire ELF, fido ELF, and Stellaris EABI platforms.

• GNU/Linux Prelinker. For select GNU/Linux target systems, Sourcery G++ includes the
GNU/Linux prelinker. The prelinker is a postprocessor for GNU/Linux applications which can
dramatically reduce application launch time. CodeSourcery has modified the prelinker to operate
on non-GNU/Linux host systems, including Microsoft Windows.

• Library Reduction Utility. Sourcery G++ also includes a Library Reduction Utility for
GNU/Linux targets. This utility allows the GNU C Library to be relinked to include only those
functions used by a given collection of binaries.

8

Sourcery G++ Subscriptions

• Additional Libraries. For some platforms, additional run-time libraries optimized for partic-
ular CPUs are available. Pre-built binary versions of the libraries with debug information are
also available to subscribers.

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

2.2. Accessing your Sourcery G++ Subscription
Account
If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portal1. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

1 https://support.codesourcery.com/GNUToolchain/

9

Sourcery G++ Subscriptions

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Chapter 3
Sourcery G++ Lite for ARM
uClinux
This chapter contains information about using Sourcery G++ Lite on your target system.
This chapter also contains information about changes in this release of Sourcery G++ Lite.
You should read this chapter to learn how to best use Sourcery G++ Lite on your target
system.

10

3.1. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you build a target application, Sourcery G++ automatically selects the multilib
matching the build options you have selected.

Each multilib corresponds to a sysroot directory that contains the files that should be installed on
the target system. You can find the sysroot directories provided with Sourcery G++ in the
arm-uclinuxeabi/libc directory of your installation.

The following library configurations are available in Sourcery G++ Lite for ARM uClinux.

ARMv4T - Little-Endian, Soft-Float

Command-line option(s):

./Sysroot subdirectory:

ARMv6-M Thumb - Little-Endian, Soft-Float

-mthumb -march=armv6-mCommand-line option(s):

armv6-m/Sysroot subdirectory:

ARMv7 Thumb-2 - Little-Endian, Soft-Float

-mthumb -march=armv7Command-line option(s):

thumb2/Sysroot subdirectory:

3.2. NEON SIMD Code
Sourcery G++ includes preliminary support for automatic generation of NEON SIMD vector code.
Autovectorization is a compiler optimization where loops involving normal integer or floating-point
code are transformed into loops that use NEON SIMD instruction to process several data elements
at once.

To enable generation of NEON vector code specify -ftree-vectorize -mfpu=neon
-mfloat-abi=softfp. -mfpu=neon also enables generations of VFPv3 scalar floating-point
code.

Sourcery G++ also includes preliminary support for manual generation of NEON SIMD code using
C intrinsic functions. These intrinsics, the same as those supported by the ARM RVCT compiler,
are defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section
of the GCC manual. The options -mfpu=neon -mfloat-abi=softfp must be specified to
use these intrinsics; -ftree-vectorize is not required.

NEON support is still under active development. It has not been subject to extensive testing, and
may not yet take full advantage of all the features provided by the NEON architecture.

3.3. Building uClinux Applications
When you use GCC to link a uClinux application, it creates two output files. The executable file, as
specified by the -o command-line option, is a uClinux FLAT format binary (bFLT) file. This is the
file you should copy to and run on your uClinux target. The second output file is an ELF-format file

11

Sourcery G++ Lite for ARM uClinux

containing additional debug and symbol table information to allow you to debug your program with
GDB, as described in Section 3.4, “GDB Server”. This file has a .gdb extension.

For example, if you specify the command

arm-uclinuxeabi-gcc foo.c -o bar

then bar is the FLAT-format executable and bar.gdb is the ELF-format file.

3.4. GDB Server
Sourcery G++ Lite contains a gdbserver for running on the target. The server executable is located
in the sysroot/usr/bin directory of your installation, where sysroot is the pathname to the
sysroot, as documented in Section 3.1, “Library Configurations”. You need to copy the appropriate
gdbserver executable to your target system and then invoke it as

gdbserver :port program

port can be any available TCP port; 5000 is a common choice. gdbserver waits for a connection
from gdb and then commences serving requests for it. To connect to gdbserver from your host
system, start gdb, but specify the special .gdb version of your program.

> arm-uclinuxeabi-gdb program.gdb

Then connect to the target system:

(gdb) target remote host:port

At this point you are able to debug as usual.

3.5. Sourcery G++ Lite Release Notes
This section documents Sourcery G++ Lite changes for each released revision.

3.5.1. Changes in Sourcery G++ Lite 2008q1-126

Cortex-M3 system register accesses. Bugs in the ARMUSB support for the Sourcery G++ Lite
Debug Sprite that resulted in incorrect values when accessing the Cortex-M3 system registers have
been fixed.

Disassembler bug fix. A bug in the disassembler has been fixed that formerly caused objdump
to crash when processing raw binary files, or other executables with an empty symbol table.

Attaching to running ARMUSB devices. A bug in the Debug Sprite that caused the -a command-
line option to be ignored has been fixed. It is now possible to connect to ARMUSB devices without
resetting the device.

NEON assembler symbols. An assembler bug that caused spurious undefined symbols to be
generated has been fixed. The mov d0, d1 instruction would incorrectly cause an undefined
symbol d1 to be created.

Bug fixes for Flash programming through ULINK2. Several problems have been resolved that
prevented flash programming through ULINK2 and running code from flash on STR91x devices
from working correctly.

12

Sourcery G++ Lite for ARM uClinux

GDB info registers crash fix. Executing info registers after executing flushregs no longer
crashes GDB.

3.5.2. Changes in Sourcery G++ Lite 2008q1-102

GDB and Ctrl-C on Windows . GDB no longer crashes when you press Ctrl-C twice during
remote debugging to give up waiting for the target.

ARM Cortex-A9 processor support. The compiler can now generate code optimized for the
ARM Cortex-A9 processor. This is enabled by the the -mcpu=cortex-a9 command-line option.

MOVW and MOVT relocations. A linker error that resulted in incorrect offsets when processing
relocations on MOVW and MOVT instructions referencing mergeable string sections has been fixed.

Improved argument-passing code. The compiler can now generate more efficient code for certain
functions whose arguments must be sign-extended to conform with language or ABI conventions.
The required conversion was formerly being performed both in the called function and at all call
sites; now the redundant conversion has been eliminated for functions that can only be called within
the compilation unit where they are defined.

Multi-process mode for gdbserver. The gdbserver utility has a new command-line option,
--multi, that allows you to use it to debug multiple program instances. Refer to the Debugger
manual for more information.

GDB qOffsets crash fix. GDB no longer crashes when a remote stub provides load offsets
for an unlinked object file.

Linker error allocating ELF segments. A bug where the linker produces an incorrect error
message with segments at the top of the address space has been fixed.

GCC stack size limit increased. On Windows hosts, the maximum stack size for the GCC ex-
ecutable has been increased. This means that more complex programs can be compiled.

Invalid object file after strip. A bug in the assembler has been fixed that formerly caused .set
symbol expression constructs to emit symbol in the wrong section. This in turn caused in-
consistent behavior after stripping the symbol table.

GCC update. The GCC package has been updated to version 4.2.3. This version includes numerous
bug fixes since GCC 4.2.

License checking on Linux. Sourcery G++'s license-checking logic now includes a workaround
for a kernel bug present in some versions of Linux. This bug formerly caused failures with an error
message from the cs-license component.

Cortex-R4F and VFPv3-D16. Sourcery G++ now supports the ARM Cortex-R4F CPU and the
VFPv3-D16 floating-point coprocessor. These can be selected with -mcpu=cortex-r4f and
-mfpu=vfpv3-d16, respectively.

Overlapping operands for long multiply instructions. An incorrect assembler warning has
been removed in the case of overlapping source and destination operands for UMULL, SMULL, UMLAL
and SMLAL instructions on ARMv6 processors.

Size optimization bug. A code generation bug that caused corruption of function arguments
when compiling with -Os has been fixed. The corruption occurred as part of the sibling call optim-
ization.

13

Sourcery G++ Lite for ARM uClinux

C++ library ABI fix. GCC 4.2.1's std::type_info was not fully compatible with earlier
versions. The ordering of four virtual functions has been fixed in this update.

GDB support for user-defined prefixed commands. The GDB define and document commands,
which allow you to add new commands to the GDB command-line interface, now support creating
commands within an existing prefix such as target. Hooks for prefixed commands are also supported.
Refer to the Debugger manual for more information.

GDB update. The included version of GDB has been updated to 6.7.20080107. This update in-
cludes numerous bug fixes.

UNC pathname bug fix. A bug has been fixed that caused linker errors on Windows hosts when
running a Sourcery G++ toolchain installed in a UNC path (\\host\directory).

Linker crash on invalid input files. Some older versions of GCC generated object files with
invalid mergeable string sections when compiling with -fmerge-all-constants. This bug
was fixed in Sourcery G++ as of version 4.1-43. However, since system libraries included with some
GNU/Linux distributions were affected by this bug, the linker has now been changed to accept object
files with such invalid sections, rather than crash or produce an error message.

GDB search path bug fix. A bug in GDB has been fixed that formerly resulted in an internal
error when setting solib-search-path or solib-absolute-prefix after establishing a
connection to a remote target.

Binutils update. The binutils package has been updated to version 2.18.50.20080215 from the
FSF trunk. This update includes numerous bug fixes.

gdbserver support for execution wrappers. gdbserver has a new command-line option,
--wrapper, which specifies a wrapper for any programs run by gdbserver. The specified wrapper
can prepare the system and environment for the new program.

Read-only variables. The C++ compiler now places variables whose types are instantiations of
template classes in a read-only data section if they are declared const and initialized with a constant
value. This changes reduces the RAM usage of affected applications.

CodeSourcery Common Startup Code Sequence. Support for CS3, a unified startup scheme
is included.

Improvements to flthdr utility. The flthdr utility has been improved so that it no longer depends
on external utility programs. In particular, the compression and decompression options now work
correctly on Windows.

3.5.3. Changes in Sourcery G++ Lite 2007q3-51

Volatile postincrement and postdecrement bug fix. A code generation bug that caused postin-
crement or postdecrement of a volatile object to reread the modified value from that object in some
contexts has been fixed. The bug affected code performing a comparison of the postincrement or
postdecrement expression with a constant, or that was optimized to comparison with a constant.

Support for debugging with FlashPro3. Support has been added for debugging with the Actel
FlashPro3 JTAG device on Windows hosts. This works only with Actel Cortex-M1 FPGAs.

C++ class debug information. The flag -femit-class-debug-always is now disabled
by default. The flag produces duplicate C++ class debug information as a work-around for older
debuggers.

14

Sourcery G++ Lite for ARM uClinux

Improved breakpoints in constructors and template functions. GDB now supports breakpoints
on source code locations that have several code addresses associated with them. Setting a breakpoint
on a constructor automatically associates the breakpoint with all constructor bodies generated by
GCC. If you set a breakpoint on a line of a templated function, GDB breaks at the indicated line in
all instantiations of the templated function.

GDB printf %p. GDB's printf command now supports the "%p" format specifier.

GDB update. The included version of GDB has been updated to 6.6.20070821. This update in-
cludes numerous bug fixes.

Assembler code file name suffixes. GCC now recognizes .sx as well as .S as a file name suffix
indicating assembler code which must be preprocessed. The alternate suffix may be useful in con-
junction with other program development tools on Windows that do not distinguish case on filenames
and treat .S the same as .s, which GCC uses to indicate assembler code without preprocessing.

3.5.4. Changes in Sourcery G++ Lite 2007q3-33

Preprocessing assembly code. The compiler driver passes -I options to the assembler, so that
#include directives (processed by the preprocessor) and .include directives (processed by the
assembler) use the same search path.

uClibc memcpy and memmove functions. A bug that caused the uClibc implementations of
memcpy and memmove to return incorrect values has been fixed.

Dynamically-initialized const variables. Dynamically-initialized namespace-scope C++
variables are no longer placed in read-only data sections, even when marked const. These variables
must be modified at startup, so they cannot be placed in ROM, even though their values cannot
change once initialized.

Register allocation bug fix. A register allocation bug has been fixed. Under rare circumstances,
the bug caused incorrect code generation.

iWMMXt bug fix. A GCC bug affecting code generation for iWMMXt processors has been
fixed. The bug caused internal compiler errors when compiling some functions with large stack
frames.

NEON coprocessor system registers. The assembler now accepts the MVFR0 and MVFR1 cop-
rocessor registers in fmrx and fmxr instructions.

Disabling diagnostics for use of system header and library directories. The warnings for use
of options such as -I/usr/include when cross compiling can be disabled with a new option
-Wno-poison-system-directories. This option is intended for use in chroot environments
when such directories contain the correct headers and libraries for the target system rather than the
host.

Default linker script. GCC no longer uses the simulator linker script by default. To avoid a link
failure, you must specify a linker script explicitly with the -T command-line option, or via the
Properties item on the Project menu in the Sourcery G++ IDE.

Thumb-2 doubleword writeback addressing modes. An assembler bug that caused writeback
addressing modes for ldrd and strd to be incorrectly encoded has been fixed.

Stricter check for anonymous unions. G++ now issues an error about invalid code that uses the
same name for a member of an anonymous union and an entity in the surrounding namespace. For
example, you will now get an error about code like:

15

Sourcery G++ Lite for ARM uClinux

int i;
static union { int i; };

because both the global variable and the anonymous union member are named i. To make this code
valid you must change one of the declarations to use a different name.

GCC update. The GCC package has been updated to version 4.2.1. This version includes numerous
bug fixes since GCC 4.2.

Smaller code for C++ destructors. G++ now generates more compact code to handle the destruc-
tion of C++ objects declared at namespace scope or declared within a function scope using the
static keyword.

Robustness on Microsoft Windows. Defects that sometimes caused GDB to become non-re-
sponsive on Microsoft Windows have been eliminated.

Binutils update. The binutils package has been updated to the 2007-08-19 version of the pre-
2.18 FSF trunk. This contains many new improvements and bug fixes. For more information, refer
to the manuals for the individual utilities, and to the binutils web site at http://www.gnu.org/
software/binutils/.

Debugging information fix. GCC no longer generates invalid debugging information for sections
with no contents. The invalid debugging information caused the GNU/Linux prelinker to crash.

Calls to undefined weak symbols. The linker now implements semantics that comply to the
ARM EABI for R_ARM_CALL and T_ARM_THM_CALL relocations against undefined weak symbols.
These now result in a jump to the next instruction.

Thumb-2 shift instruction aliases. The assembler now accepts mov with shifted operands as an
alias for Thumb-2 shift instructions. For example mov r0, r1, lsl r2 is encoded as lsl
r0, r1, r2.

Inlined function debugging fix. GDB now backtraces correctly when stopped at the first instruc-
tion of an inlined function. Earlier versions would sometimes encounter internal errors in this situation.

Assembler skipping \ characters. A bug is fixed where the assembler would skip \ characters
when they appeared at certain positions in the input file. This bug primarily affected assembler
macros.

Improved diagnostics for region overflow. The linker will now give more helpful diagnostics
when the object files being linked are too big for one of the memory regions defined in the linker
script.

EABI object attribute merging. The linker now properly merges EABI object attributes into its
output file.

Thumb-2 exception return instructions. An assembler bug that caused subs pc, lr,
#const and movs pc, lr to be incorrectly encoded has been fixed.

Tag_ABI_PCS_wchar_t object attributes. Objects generated with -fshort-wchar are now
given the correct Tag_ABI_PCS_wchar_t EABI object attribute annotations.

Spurious compiler warnings eliminated. GCC no longer emits warnings when linker-specific
command-line options are provided in combination with modes that do not perform linking, such as
with the -c flag.

16

Sourcery G++ Lite for ARM uClinux

Debugging of inlined functions. GDB now supports inlined functions. GDB can include inlined
functions in the stack trace; display inlined functions' arguments and local variables; and step into,
over, and out of inlined functions.

Uppercase special register names. The assembler now accepts both uppercase and lowercase
special register names when assembling msr and mrs instructions for the Microcontroller profile
of the ARM Architecture.

Debugger access to out-of-bounds memory. GDB turns on inaccessible-by-default
by default, disallowing access to memory outside the regions specified in a board configulation.

Call shortening bug fix. GCC no longer overrides __attribute__((long_call)) on
calls to locally-defined functions when the function is weak, or when it is in a different section from
the caller.

Binutils update. The binutils package has been updated from version 2.17 to the pre-2.18 FSF
trunk. This is a significant update with many improvements and bug fixes.

Changes to the assembler (as) include:

• On MIPS targets, support for additional processors and the SmartMIPS and DSP Release 2 ex-
tensions has been added.

New linker (ld) features include:

• A new command-line option --default-script has been added to give more precise control
over linker script processing.

• There are new command-line options -Bsymbolic-functions, --dynamic-list,
--dynamic-list-cpp-new, and --dynamic-list-data to control symbols that should
be dynamically linked.

• The new --print-gc-sections option lists sections removed by garbage collection.

Other changes include:

• The objcopy utility has a new --extract-symbol option to extract only symbol table inform-
ation from the input file.

• The gprof utility now allows input files to have histogram records for several memory ranges,
provided those ranges are disjoint.

For more information, refer to the manuals for the individual utilities, and the binutils web site at
http://www.gnu.org/software/binutils/.

GDB update. The included version of GDB has been updated to 6.6.50.20070620. This update
includes numerous bug fixes.

Forced alignment of array variables. A new option -falign-arrays has been added to the
compiler. Specifying this option sets the minimum alignment for array variables to be the largest
power of two less than or equal to their total storage size, or the biggest alignment used on the machine,
whichever is smaller. This option may be helpful when compiling legacy code that uses type punning
on arrays that does not strictly conform to the C standard.

17

Sourcery G++ Lite for ARM uClinux

ARM EABI compliance. Objects produced by Sourcery G++ are now marked as ARM ELF
version 5 rather than ARM ELF version 4. This reflects compliance with recent revisions of the
ARM EABI. Sourcery G++ still accepts objects marked with version 4.

Smaller C++ applications. The C++ runtime library has been modified so that using namespace-
scope objects with destructors does not pull in unnecessary support functions. Therefore, statically
linked C++ applications compiled with -fno-exceptions are substantially smaller.

ARMv6-M floating-point bug fix. A bug affecting conversion of wider floating-point types to
subnormal float values on ARMv6-M processors has been fixed.

3.5.5. Changes in Sourcery G++ Lite 2007q1-21

NEON coprocessor system registers. The assembler now accepts the MVFR0 and MVFR1 cop-
rocessor registers in fmrx and fmxr instructions.

Disabling diagnostics for use of system header and library directories. The warnings for use
of options such as -I/usr/include when cross compiling can be disabled with a new option
-Wno-poison-system-directories. This option is intended for use in chroot environments
when such directories contain the correct headers and libraries for the target system rather than the
host.

Thumb-2 doubleword writeback addressing modes. An assembler bug that caused writeback
addressing modes for ldrd and strd to be incorrectly encoded has been fixed.

Thumb-2 shift instruction aliases. The assembler now accepts mov with shifted operands as an
alias for Thumb-2 shift instructions. For example mov r0, r1, lsl r2 is encoded as lsl
r0, r1, r2.

EABI object attribute merging. The linker now properly merges EABI object attributes into its
output file.

Thumb-2 exception return instructions. An assembler bug that caused subs pc, lr,
#const and movs pc, lr to be incorrectly encoded has been fixed.

Tag_ABI_PCS_wchar_t object attributes. Objects generated with -fshort-wchar are now
given the correct Tag_ABI_PCS_wchar_t EABI object attribute annotations.

Uppercase special register names. The assembler now accepts both uppercase and lowercase
special register names when assembling msr and mrs instructions for the Microcontroller profile
of the ARM Architecture.

3.5.6. Changes in Sourcery G++ Lite 2007q1-10

Disassembly of overlapping sections. A bug in the disassembler that caused code to be displayed
as data (and vice-versa) in files with overlapping sections has been fixed. This mainly affects the
objdump utility.

Installer hangs while refreshing environment. The Sourcery G++ installer for Microsoft Win-
dows now updates the PATH environment variable without waiting for open applications to acknow-
ledge the update. This change prevents open applications from blocking the installer's progress.

Improved assembler diagnostics for 8-bit offsets. The assembler now correctly diagnoses out-
of-range offsets to instructions such as LDRD as 8-bit rather than half-word offsets.

18

Sourcery G++ Lite for ARM uClinux

Less disk space required for installation. Sourcery G++ Lite packages are smaller because
multiple copies of files have been replaced with hard and/or symbolic links when possible. Both the
size of the installer images and the amount of disk space required for an installed package have been
reduced.

Thumb register corruption fix. A bug in the compiler that could cause register corruption in
Thumb mode has been fixed. The compiler was formerly emitting code to restore registers on function
return that was not interrupt safe.

__aeabi_lcmp. An error in the libgcc implementation of __aeabi_lcmp that caused incorrect
results to be returned has been fixed. This is a support routine defined by the ARM EABI. GCC does
not normally use this routine directly, however it may be used by third-party code.

The \@ assembler pseudo-variable. A bug in the assembler that caused uses of the \@ pseudo-
variable to be mis-parsed as comments has been fixed.

Crash when generating vector code. A bug that sometimes caused the compiler to crash when
invoked with the -ftree-vectorize option has been fixed.

Propagation of Thumb symbol attributes. Symbols referring to Thumb functions on ARM
targets now have their Thumb attribute correctly propagated to any aliases defined with .set or
.symver.

Linking of non-ELF images. A linker bug that could cause a crash when linking non-ELF objects
for ARM targets has been fixed.

Invalid load instructions. A bug in the compiler which caused it to generate invalid assembly
(e.g. ldrd r0, [#0, r2]) has been fixed.

VFPv3/NEON debug information. A bug in the compiler which caused it to generate incorrect
debug information for code using VFPv3/NEON registers has been fixed. The debugger is now able
unable to locate and display values held in these registers.

ARMv6-M system instructions. An assembler bug that caused some ARMv6-M system instruc-
tions to be incorrectly rejected has been fixed. The affected instructions are msr, mrs, yield, wfi,
wfe and sev.

Assembly of Thumb-2 load/store multiple instructions. The Thumb-2 ldm and stm assembly
mnemonics are now assembled to ldr and str instructions when a single register is transferred,
as specified in the Thumb-2 Architecture Supplement.

Conditional Thumb-2 branch instructions. A linker bug that could cause objects involving
conditional Thumb-2 branch instructions to be incorrectly rejected has been fixed.

Alignment bug fix. A bug has been fixed that formerly caused incorrect code to be generated in
some situations for copying structure arguments being passed by value. The incorrect code caused
alignment errors on stack accesses on some targets.

3.5.7. Changes in Sourcery G++ Lite 2007q1-3

Initial release. This is the initial release for ARM uClinux.

19

Sourcery G++ Lite for ARM uClinux

Chapter 4
Installation and Configuration
This chapter explains how to install Sourcery G++ Lite.You will learn how to:

1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

20

4.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is "arm-uclinuxeabi".

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

4.2. System Requirements
4.2.1. Host Operating System Requirements

Sourcery G++ supports the following host operating systems:

• Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using
IA32, AMD64, and EM64T processors.

• GNU/Linux systems using the IA32, AMD64, or EM64T processors, including Debian 3.0 (and
later), Red Hat Enterprise Linux 3 (and later), SuSE Enterprise Linux 8 (and later).

• Solaris 2.8 (and later) systems using SPARC processors.

Not all combinations of host and target systems are available. Therefore, Sourcery G++ for your
target system may not be available on all of the above host systems.

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit GNU/Linux
host system, Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed
on your system, you must install them before installing and using Sourcery G++ Lite. Consult your
operating system documentation for more information about obtaining these libraries.

4.2.2. Host Hardware Requirements

In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB. In addition, the graphical installer requires a similar amount of scratch space
during the installation process.

4.2.3.Target System Requirements

See Chapter 3, Sourcery G++ Lite for ARM uClinux for requirements that apply to the target system.

4.3. Downloading an Installer
If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 4.4, “Installing Sourcery G++ Lite”.

21

Installation and Configuration

If you have a Sourcery G++ subscription (or evaluation), then you can log into the Sourcery G++
Portal1 to download your Sourcery G++ toolchain(s). CodeSourcery also makes some toolchains
available to the general public from the Sourcery G++ web site2. These publicly available toolchains
do not include all the functionality of CodeSourcery's product releases.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable, with the .exe extension. For GNU/Linux systems with an X Window System,
Sourcery G++ Lite is provided as a graphical installer with the .bin extension. For Solaris, and
GNU/Linux systems without an X Window System, Sourcery G++ Lite is provided as a compressed
archive .tar.bz2.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux and Solaris systems,
save the download package in your home directory.

4.4. Installing Sourcery G++ Lite
The method used to install Sourcery G++ Lite depends on your host system.

4.4.1. Installing Sourcery G++ Lite on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. This package
comes with a bundled Java Runtime Environment; you do not have to download any additional
software.

4.4.2. Installing Sourcery G++ Lite on GNU/Linux systems with an X
Window System

Start the graphical installer by invoking the executable shell script:

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. This package
comes with a bundled Java Runtime Environment; you do not have to download any additional
software.

4.4.3. Installing Sourcery G++ Lite on Solaris or GNU/Linux systems
without an X Window System

You do not need to be a system administrator to install Sourcery G++ Lite on a GNU/Linux or Sol-
aris system. You may install Sourcery G++ Lite using any user account and in any directory to which
you have write access. This guide assumes that you have decided to install Sourcery G++ Lite in the
$HOME/CodeSourcery subdirectory of your home directory and that the filename of the package
you have downloaded is /path/to/package.tar.bz2. After installation the toolchain will
be in $HOME/CodeSourcery/sourceryg++-4.1 or similar.

1 https://support.codesourcery.com/GNUToolchain/
2 http://www.codesourcery.com/gnu_toolchains/

22

Installation and Configuration

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

If you are installing a native toolchain, it is then necessary to run a post-install script found in the
share directory:

> /bin/sh sourceryg++-4.1/share/postinst-*

The .tar.bz2 package is not bundled with a Java Runtime Environment.

4.4.4. Installing the Java Runtime Environment

Some versions of Sourcery G++ include the Eclipse Integrated Development Environment. Because
Eclipse is an optional component, the installer allows you to choose whether or not to install it. Eclipse
is a Java application and requires the Java Runtime Environment (JRE). The Java Runtime Environ-
ment is available at no charge from Sun Microsystems Java website3. You may download either the
Java Runtime Environment (JRE) or the Java Development Kit (JDK). (The JDK includes the JRE.)

4.5. Uninstalling Sourcery G++ Lite
The method used to uninstall Sourcery G++ Lite depends on your host system. If you have modified
any files in the installation it is recommended that you back up these changes. The uninstall procedure
may remove the files you have altered.

4.5.1. Uninstalling Sourcery G++ Lite on Microsoft Windows

Select Start, then Control Panel. Select Add or Remove Programs. Scroll down and
click on Sourcery G++ for ARM uClinux. Select Change/Remove and follow the on-
screen dialogs to uninstall Sourcery G++ Lite.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs to remove the drivers separately. De-
pending on the device, you may need to reboot your computer to complete the driver uninstall.

4.5.2. Uninstalling Sourcery G++ Lite on Microsoft Windows Vista

Select Start, then Settings and finally Control Panel. Select the Uninstall a
program task. Scroll down and double click on Sourcery G++ for ARM uClinux. Follow
the on-screen dialogs to uninstall Sourcery G++ Lite.

3 http://java.sun.com/j2se/

23

Installation and Configuration

http://java.sun.com/j2se/

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Uninstall a program to remove the drivers separately. Depending
on the device, you may need to reboot your computer to complete the driver uninstall.

4.5.3. Uninstalling Sourcery G++ Lite on GNU/Linux using the graphical
uninstaller

If you installed on GNU/Linux using the graphical installer, then you must use the graphical uninstaller
to remove Sourcery G++ Lite. The arm-uclinuxeabi directory located in the install directory
will be removed entirely by the uninstaller. Please back up any changes you have made to this direct-
ory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++
Lite.

4.5.4. Uninstalling Sourcery G++ Lite on GNU/Linux

If you installed Sourcery G++ Lite from a .tar.bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

4.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system. The name of the Sourcery G++ commands all begin with arm-uclinuxeabi
so that you can install Sourcery G++ for multiple target systems in the same directory.

4.6.1. Setting up the Environment on Microsoft Windows

On a non-Vista Microsoft Windows system, the installer automatically adds Sourcery G++ to your
PATH. You can test that your PATH is set up correctly by using the following command:

> arm-uclinuxeabi-g++ -v

and verifying that the last line of the output contains: Sourcery G++ Lite 2008q1-126.

On a Microsoft Windows Vista system, the installer does not automatically add Sourcery G++ to
your PATH. To set up your PATH on Microsoft Windows Vista, use the following command in a
cmd.exe shell:

> setx "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation. You can verify that the command worked by starting a second cmd.exe shell
and running:

> arm-uclinuxeabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2008q1-126.

4.6.1.1. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

24

Installation and Configuration

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

4.6.2. Setting up the Environment on GNU/Linux or Solaris

If you installed Sourcery G++ Lite using the .bin graphical installer then you may skip this step.
The graphical installer does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/sourceryg++-4.1/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/sourceryg++-4.1/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-uclinuxeabi/man.

You can test that your PATH is set up correctly by using the following command:

> arm-uclinuxeabi-g++

and verifying that you receive the message:

arm-uclinuxeabi-g++: no input files

25

Installation and Configuration

Chapter 5
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ Lite from the command line. This
chapter assumes you have installed Sourcery G++ Lite as described in Chapter 4, Installation
and Configuration.

26

5.1. Building an Application
This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-uclinuxeabi, as in-
dicated by the arm-uclinuxeabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named hello.c containing the following simple program:

#include <stdio.h>

int
main (void)
{
 printf("Hello World!\n");
 return 0;
}

Compile and link this program using the command:

> arm-uclinuxeabi-gcc -o hello hello.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-uclinuxeabi-gcc with arm-uclinuxeabi-g++.)

5.2. Running Applications on the Target System
To run your program on a uClinux target system, use the command:

> ./hello

You should see:

Hello world!

5.3. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

5.3.1. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 6, Sourcery G++ Debug
Sprite for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

(gdb) target remote | arm-uclinuxeabi-sprite arguments

27

Using Sourcery G++ from the Command Line

Refer to Section 6.3, “Sourcery G++ Debug Sprite Options” for a full description of the Sprite argu-
ments.

5.3.2. Connecting to an External GDB Server

On targets with UNIX-like operating systems (including GNU/Linux), Sourcery G++ Lite includes
a program called gdbserver that can be used for remote debugging. Follow the instructions in
Chapter 3, Sourcery G++ Lite for ARM uClinux to install and run gdbserver on your target system.

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

28

Using Sourcery G++ from the Command Line

Chapter 6
Sourcery G++ Debug Sprite
This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite is provided for debugging of the Linux or uClinux kernel on the target board.This
chapter includes information about the debugging devices and boards supported by the
Sprite for ARM uClinux.

29

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM uClinux. This Sprite is provided
to allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

Note for Linux/uClinux users

The Debug Sprite provided with Sourcery G++ Lite allows remote debugging of the Linux
or uClinux kernel running on the target. For remote debugging of application programs,
you should use gdbserver instead. See Chapter 3, Sourcery G++ Lite for ARM uClinux for
details about how to install and run gdbserver on the target.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party. You may use
the ARM SWD support (as used for debugging Luminary Micro Stellaris CPUs) only with
target systems which contain Cortex-M1 or Cortex-M3 microprocessor managed under li-
cense from ARM.

6.1. Debug Sprite Example
This section demonstrates execution and debugging of a simple application. Start by creating a file
named fib.c:

#include <unistd.h>

static int Fib (unsigned n, unsigned a, unsigned b)
{
 unsigned count;

 for (count = 0; count != b; count++)
 write (1, ".", 1);
 write (1, "\n", 1);

 if (n)
 Fib (n - 1, b, a + b);
}

int main ()
{
 write (1, "Fibonacci\n", 10);
 Fib (9, 0, 1);
 return 0;
}

First compile and link the program for the target board. If it is a stand-alone program for a Cyclone
III Cortex-M1 board use:

> arm-uclinuxeabi-gcc -mcpu=cortex-m1 -mthumb \
 -Tcycloneiii-cm1-ram-hosted.ld fib.c -o fib -g

30

Sourcery G++ Debug Sprite

For other boards you must make appropriate substitutions in the preceding command. If your program
is an operating system kernel such as uClinux or Linux, your usual build method should be adequate,
as the kernel contains the necessary initialization code for interrupt handlers.

Verify that the Sourcery G++ Debug Sprite can detect your debug hardware:

> arm-uclinuxeabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
 (Sourcery G++ Lite Sourcery G++ Lite 2008q1-126)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device
armusb: [speed=<n:0-7>] ARMUSB device
 armusb:/// - ARMUSB Device

This shows that RDI and ARMUSB devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed.

Start the debugger on your host system:

> arm-uclinuxeabi-gdb fib

Connecting GDB to the board depends on the debug device you are using. If you are using a ARMUSB
debug device, use:

(gdb) target remote | arm-uclinuxeabi-sprite \
armusb:///?speed=2 lm3s8xx
Remote debugging using | arm-uclinuxeabi-sprite \
armusb:///?speed=2 lm3s8xx
arm-uclinuxeabi-sprite:Target reset
0x00008936 in ?? ()

If you are connecting via RDI, you must specify the full path to the RDI library file and configuration
file for that library:

(gdb) target remote | arm-uclinuxeabi-sprite \
"rdi:///?rdi-library=library&rdi-config=config"
Remote debugging using | arm-uclinuxeabi-sprite \
"rdi:///?rdi-library=library&rdi-config=config"
ARMulator RVARMulatorISS1.4 [Build 297]
For support please contact support-sw@arm.com
Software supplied by: ARM Limited
ARM1136JF-S
ARM11 Instruction Set Simulator, May 24 2006
ARM Instruction Set Simulator for [Build number 297]
, CP15, 8KB ICache, 8KB DCache 32KB DTCRam0 -Supports SmartCaching
32KB ITCRam0 -Supports SmartCaching , VFP11 (no support code), \
4GB, Pagetables, Mapfile, VIC - PL192
VIC: this is a RELEASE build
, Profiler, SIMRDI MemCallback, Tube, Millisecond [6666.67
cycles_per_millisecond], Tracer
Tracing: Instructions, Memory accesses, Events, Disassemble, \

31

Sourcery G++ Debug Sprite

Trace bus, Trace registers, Opcode Fetch Mask \
0x00000000-0x00000000, RDI Codesequences, Semihosting, \
CP14 Debug(6,2,2)
Little endian
arm-uclinuxeabi-sprite:Missing config file; \
this may not work
arm-uclinuxeabi-sprite:Target reset
0x00000000 in ?? ()

Refer to Section 6.2, “Invoking Sourcery G++ Debug Sprite” for more information about the supported
devices in Sourcery G++ Lite and details about the command-line syntax for invoking the Sprite.

At this point you can use GDB to load your program onto the target board and control its execution
as required:

(gdb) load
Loading section .text, size 0xaa0 lma 0x0
Loading section .ARM.exidx, size 0x8 lma 0xaa0
Loading section .data, size 0xfc lma 0xaa8
Start address 0x11, load size 2980
Transfer rate: 6231 bits/sec, 596 bytes/write.

Set a breakpoint so that the debugger stops when your program reaches main:

(gdb) break main
Breakpoint 1 at 0x20000524: file fib.c, line 17.

Allow the program to execute until it reaches main:

(gdb) continue
Continuing.
main () at fib.c:13
13 write (1, "Fibonacci\n", 10);
(gdb) next
Fibonacci
14 Fib (9, 0, 1);

Permit the program to finish executing with:

(gdb) continue
Continuing.
.
.
..
...
.....
........
.............
.....................
..................................
...

Program exited normally.

32

Sourcery G++ Debug Sprite

6.2. Invoking Sourcery G++ Debug Sprite
The Debug Sprite is invoked as follows:

arm-uclinuxeabi-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery G++ Lite for ARM uC-
linux:

rdi Use an RDI debugging device. Refer to Section 6.4, “Remote Debug Interface
Devices”.

flashpro Use a FlashPro debugging device. Refer to Section 6.5, “FlashPro Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board. If board-
file refers to a file (via a relative or absolute pathname), it is read. Otherwise, board-file can
be a board name, and the toolchain's board directory is searched for a matching file. See Section 6.7,
“Supported Board Files” for the list of supported boards, or invoke the Sprite with the -b option to
list the available board files. You can also write a custom board file; see Section 6.8, “Board File
Syntax” for more information.

6.3. Sourcery G++ Debug Sprite Options
The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-uclinuxeabi-sprite ... command, you do not
need this option.

33

Sourcery G++ Debug Sprite

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

6.4. Remote Debug Interface Devices
Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the device-url is specified as follows:

rdi:[///][?device-options]

The following device-options are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=configfile Specify a file containing configuration information for library.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=value pairs. Consult the
documentation of your RDI library for details.

6.5. FlashPro Devices
On Windows hosts, Sourcery G++ Lite supports FlashPro devices used with Actel Cortex-M1 devel-
opment kits.

For FlashPro devices, the device-url has the following form:

flashpro:[//usb12345/][?jtagclock=rate]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the -i switch, as follows:

> arm-uclinuxeabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
rate is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

34

Sourcery G++ Debug Sprite

6.5.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-uclinuxeabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro device
 flashpro://usb12345/ - FlashPro Device
 ...

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

6.6. Debugging a Remote Board
You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-uclinuxeabi-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000. Use the following command to connect GDB to the remote
Sprite:

(gdb) target remote host:10000

to connect to the remote Sprite, where host is the name of the remote machine. After this, debugging
is just as if you are debugging a target board connected to your host machine.

6.7. Supported Board Files
The Sourcery G++ Debug Sprite for ARM uClinux includes support for the following target boards.
Specify the appropriate board-file as an argument when invoking the sprite from the command
line.

ConfigBoardConfigBoard

cycloneiii-cm1Cyclone III Cortex-M1

6.8. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-uclinuxeabi/lib/boards directory
in the installation. Refer to the files in that directory for examples.

35

Sourcery G++ Debug Sprite

The file's DTD is:

<!-- Board description files -->
<!ELEMENT board
 (properties?, feature?, initialize?, memory-map?)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

36

Sourcery G++ Debug Sprite

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top level element encapsulates the entire description of the board. It
can contain <properties>, <features>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element. It can also contain the following
<property> elements:

<banked-regs> The <banked-regs> element specifies that the
CPU of the target board has banked registers for
different processor modes (supervisor, IRQ, etc.).

<has-vfp> The <has-vfp> element specifies that the CPU
of the target board has VFP registers.

<system-v6-m> The <system-v6-m> element specifies that the
CPU of the target board has ARMv6-M architecture
system registers.

<system-v7-m> The <system-v7-m> element specifies that the
CPU of the target board has ARMv7-M architecture
system registers.

<initialize> The <initialize> element allows board devices to be initialized before
any attempt is made to download a program to it. It can contain
<write-register>, <write-memory> and <delay> elements.

<feature> This element is used to inform GDB about additional registers the board
supports. It is passed directly to GDB.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults

37

Sourcery G++ Debug Sprite

to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

38

Sourcery G++ Debug Sprite

Chapter 7
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

39

7.1. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal1.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

For more information on CodeSourcery support, see Chapter 2, Sourcery G++ Subscriptions.

7.2. Manuals for GNU Toolchain Components
Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-uclinuxeabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-uclinuxeabi/man/man1

Then you can invoke man as:

> man ./arm-uclinuxeabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 4.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a --help option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

1 https://support.codesourcery.com/GNUToolchain/

40

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/

	Sourcery G++ Lite
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Sourcery G++ Lite Licenses
	1.1. Licenses for Sourcery G++ Lite Components
	1.2. Sourcery G++™ Software License Agreement

	Chapter 2 Sourcery G++ Subscriptions
	2.1. About Sourcery G++ Subscriptions
	2.2. Accessing your Sourcery G++ Subscription Account

	Chapter 3 Sourcery G++ Lite for ARM uClinux
	3.1. Library Configurations
	3.2. NEON SIMD Code
	3.3. Building uClinux Applications
	3.4. GDB Server
	3.5. Sourcery G++ Lite Release Notes
	3.5.1. Changes in Sourcery G++ Lite 2008q1-126
	3.5.2. Changes in Sourcery G++ Lite 2008q1-102
	3.5.3. Changes in Sourcery G++ Lite 2007q3-51
	3.5.4. Changes in Sourcery G++ Lite 2007q3-33
	3.5.5. Changes in Sourcery G++ Lite 2007q1-21
	3.5.6. Changes in Sourcery G++ Lite 2007q1-10
	3.5.7. Changes in Sourcery G++ Lite 2007q1-3

	Chapter 4 Installation and Configuration
	4.1. Terminology
	4.2. System Requirements
	4.2.1. Host Operating System Requirements
	4.2.2. Host Hardware Requirements
	4.2.3. Target System Requirements

	4.3. Downloading an Installer
	4.4. Installing Sourcery G++ Lite
	4.4.1. Installing Sourcery G++ Lite on Microsoft Windows
	4.4.2. Installing Sourcery G++ Lite on GNU/Linux systems with an X Window System
	4.4.3. Installing Sourcery G++ Lite on Solaris or GNU/Linux systems without an X Window System
	4.4.4. Installing the Java Runtime Environment

	4.5. Uninstalling Sourcery G++ Lite
	4.5.1. Uninstalling Sourcery G++ Lite on Microsoft Windows
	4.5.2. Uninstalling Sourcery G++ Lite on Microsoft Windows Vista
	4.5.3. Uninstalling Sourcery G++ Lite on GNU/Linux using the graphical uninstaller
	4.5.4. Uninstalling Sourcery G++ Lite on GNU/Linux

	4.6. Setting up the Environment
	4.6.1. Setting up the Environment on Microsoft Windows
	4.6.1.1. Working with Cygwin

	4.6.2. Setting up the Environment on GNU/Linux or Solaris

	Chapter 5 Using Sourcery G++ from the Command Line
	5.1. Building an Application
	5.2. Running Applications on the Target System
	5.3. Running Applications from GDB
	5.3.1. Connecting to the Sourcery G++ Debug Sprite
	5.3.2. Connecting to an External GDB Server

	Chapter 6 Sourcery G++ Debug Sprite
	6.1. Debug Sprite Example
	6.2. Invoking Sourcery G++ Debug Sprite
	6.3. Sourcery G++ Debug Sprite Options
	6.4. Remote Debug Interface Devices
	6.5. FlashPro Devices
	6.5.1. Installing FlashPro Windows drivers

	6.6. Debugging a Remote Board
	6.7. Supported Board Files
	6.8. Board File Syntax

	Chapter 7 Next Steps with Sourcery G++
	7.1. Sourcery G++ Knowledge Base
	7.2. Manuals for GNU Toolchain Components

