
Sourcery G++ Lite

ARM EABI

Sourcery G++ Lite 2009q3-68

Getting Started

Sourcery G++ Lite: ARM EABI: Sourcery G++ Lite 2009q3-
68: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents
Preface .. v

1. Intended Audience ... vi
2. Organization ... vi
3. Typographical Conventions .. vii

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Configuring Sourcery G++ Lite for the Target System ... 2
1.3. Building Your Program ... 2
1.4. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 4
2.1. Terminology ... 5
2.2. System Requirements ... 5
2.3. Downloading an Installer ... 6
2.4. Installing Sourcery G++ Lite .. 6
2.5. Installing Sourcery G++ Lite Updates .. 9
2.6. Setting up the Environment .. 9
2.7. Uninstalling Sourcery G++ Lite .. 11

3. Sourcery G++ Lite for ARM EABI .. 13
3.1. Included Components and Features .. 14
3.2. Library Configurations .. 14
3.3. Using Flash Memory .. 15
3.4. ARMv7-M Interrupt Handlers .. 16
3.5. ARM Interrupt Vectors .. 16
3.6. Using VFP Floating Point .. 16
3.7. ABI Compatibility .. 17
3.8. Object File Portability ... 18
3.9. ARM Profiling Implementation ... 18

4. Using Sourcery G++ from the Command Line ... 20
4.1. Building an Application ... 21
4.2. Running Applications on the Target System ... 21
4.3. Running Applications in the Simulator ... 21
4.4. Running Applications from GDB .. 22

5. CS3™: The CodeSourcery Common Startup Code Sequence .. 24
5.1. Startup Sequence ... 25
5.2. Exit and Embedded Systems .. 27
5.3. Memory Layout ... 27
5.4. Interrupt Vectors and Handlers .. 29
5.5. Linker Scripts .. 31
5.6. Supported Boards for ARM EABI ... 33
5.7. Interrupt Vector Tables .. 34
5.8. Regions and Memory Sections .. 34

6. Sourcery G++ Debug Sprite .. 36
6.1. Probing for Debug Devices .. 37
6.2. Debug Sprite Example .. 37
6.3. Invoking Sourcery G++ Debug Sprite ... 38
6.4. Sourcery G++ Debug Sprite Options .. 39
6.5. Remote Debug Interface Devices ... 39
6.6. Actel FlashPro Devices ... 40
6.7. Altera Devices ... 40
6.8. Debugging a Remote Board ... 41
6.9. Supported Board Files ... 42

iii

6.10. Board File Syntax ... 42
7. Next Steps with Sourcery G++ .. 46

7.1. Sourcery G++ Subscriptions ... 47
7.2. Sourcery G++ Knowledge Base .. 48
7.3. Manuals for GNU Toolchain Components ... 48

A. Sourcery G++ Lite Release Notes ... 50
A.1. Changes in Sourcery G++ Lite for ARM EABI ... 51

B. Sourcery G++ Lite Licenses ... 65
B.1. Licenses for Sourcery G++ Lite Components .. 66
B.2. Sourcery G++ Software License Agreement .. 67

iv

Sourcery G++ Lite

Preface
This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

v

1. Intended Audience
This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

Chapter 3, “Sourcery G++ Lite for
ARM EABI”

This chapter contains information about using Sourcery G++
Lite that is specific to ARM EABI targets. You should read
this chapter to learn how to best use Sourcery G++ Lite on
your target system.

Chapter 4, “Using Sourcery G++
from the Command Line”

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Se-
quence”

CS3 is CodeSourcery's low-level board support library. This
chapter describes the organization of the system startup code
and tells you how you can customize it, such as by defining
your own interrupt handlers. This chapter also documents the
boards supported by Sourcery G++ Lite and the compiler and
linker options you need to use with them.

Chapter 6, “Sourcery G++ Debug
Sprite”

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite allows you to debug
programs running on a bare board without an operating system.
This chapter includes information about the debugging devices
and boards supported by the Sprite for ARM EABI.

Chapter 7, “Next Steps with Sourcery
G++”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

Appendix A, “Sourcery G++ Lite
Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for ARM EABI. You should read
through these notes to learn about new features and bug fixes.

vi

Preface

Appendix B, “Sourcery G++ Lite
Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vii

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

1

Sourcery G++ Lite for ARM EABI is intended for developers working on embedded applications
or firmware for boards without an operating system, or that run an RTOS or boot loader. This Sourcery
G++ configuration is not intended for Linux or uClinux kernel or application development.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for ARM EABI”.

1.1. Installation and Set-Up
Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site1, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

Install drivers for your debug device. If you plan to use the Sourcery G++ Debug Sprite, you
may need to install drivers, libraries, or other software on your host system. Refer to Chapter 6,
“Sourcery G++ Debug Sprite” for a list of supported devices and information about installing drivers
and other device set-up. Sourcery G++ Lite also supports third-party debug devices that communicate
via the GDB remote serial protocol. If you plan to use one of these devices, follow the manufacturer's
directions to connect the device and install any required drivers or software.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System
Identify your target board. On bare-metal targets, you must explicitly specify a linker script
for your target board on your link command line. Supported boards are listed in Chapter 5, “CS3™:
The CodeSourcery Common Startup Code Sequence”. You can also choose a simulator as your target
board.

1.3. Building Your Program
Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite. On bare-metal targets, you must specify a linker script using
the -T option on your link command line. Supported boards and linker scripts are listed in Chapter 5,
“CS3™: The CodeSourcery Common Startup Code Sequence”.

1.4. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Run or debug your program in the simulator. Sourcery G++ Lite includes an instruction-set
simulator, which provides an easy way to run or debug your program without requiring target hard-
ware. The simulator can be run directly from the command line (see Section 4.3, “Running Applica-
tions in the Simulator”) or via the debugger (see Section 4.4, “Running Applications from GDB”).

Debug your program on the target using the Debug Sprite. You can use the Sourcery G++
Debug Sprite to load and execute your program on the target from the debugger. Refer to Section 4.4,
“Running Applications from GDB” for instructions on using the Sprite from the GDB command
line. Detailed reference material for the Sourcery G++ Debug Sprite, including information about
supported debug devices, can be found in Chapter 6, “Sourcery G++ Debug Sprite”.

Debug your program on the target using a third-party debug device. Sourcery G++ supports
debugging programs on the remote target using third-party debug devices that can communicate via
the GDB remote serial protocol. For command-line GDB instructions, see Section 4.4, “Running
Applications from GDB”.

3

Quick Start

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery G++ Lite.You will learn how to:

1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

4

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-none-eabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery G++ supports the following host operating systems and architectures:

• Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using IA32,
AMD64, and EM64T processors.

• GNU/Linux systems using IA32, AMD64, or EM64T processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SuSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the default
/bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions. To install
Sourcery G++ Lite on these systems, you must make /bin/sh a symbolic link to one of
the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

5

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery G++ Lite for ARM EABI” for requirements that apply to the target system.

2.3. Downloading an Installer
If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web site1. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal2. For more information about sub-
scriptions for Sourcery G++ product releases, see Section 7.1, “Sourcery G++ Subscriptions”.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the .exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite
The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

6

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

7

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

8

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-2009q3.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates
If you have already installed an earlier version of Sourcery G++ Lite for ARM EABI on your system,
it is not necessary to uninstall it before using the installer to unpack a new version in the same location.
The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM EABI target all begin with arm-
none-eabi. This means that you can install Sourcery G++ for multiple target systems in the same
directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

9

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2009q3-68.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

10

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-none-eabi/man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2009q3-68.

2.7. Uninstalling Sourcery G++ Lite
The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

For Windows hosts other than Microsoft Windows Vista, select Start, then Control Panel.
Select Add or Remove Programs. Scroll down and click on Sourcery G++ for ARM
EABI. Select Change/Remove and follow the on-screen dialogs to uninstall Sourcery G++ Lite.

On Microsoft Windows Vista hosts, select Start, then Settings and finally Control Panel.
Select the Uninstall a program task. Scroll down and double click on Sourcery G++
for ARM EABI. Follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory with the -i console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

11

Installation and Configuration

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. The arm-none-eabi directory located in the install directory
will be removed entirely by the uninstaller. Please back up any changes you have made to this direct-
ory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++
Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a .tar.bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Installation and Configuration

Chapter 3
Sourcery G++ Lite for ARM EABI
This chapter contains information about features of Sourcery G++ Lite that are specific to
ARM EABI targets. You should read this chapter to learn how to best use Sourcery G++
Lite on your target system.

13

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery G++ Lite for
ARM EABI, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.4.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.19.51GNU Binary Utilities

Debugging support and simulators

Separate manual included.6.8.50GNU Debugger

See Chapter 6, “Sourcery G++ Debug Sprite”.2009q3-68Sourcery G++ Debug Sprite for
ARM

See Section 4.3, “Running Applications in the
Simulator”.

N/AGDB Simulator

Target libraries

See Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence”.

2009q3-68CodeSourcery Common Startup
Code Sequence

Separate manuals included.1.17.0Newlib C Library

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Sourcery G++ Lite includes linker scripts as well as runtime libraries for each multilib. You can find
these files in multilib-specific subdirectories of the arm-none-eabi/lib directory of your
Sourcery G++ install.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ARM EABI.

ARMv4 - Little-Endian, Soft-Float

defaultCommand-line option(s):

./Library subdirectory:

ARMv4 Thumb - Little-Endian, Soft-Float

-mthumbCommand-line option(s):

thumb/Library subdirectory:

14

Sourcery G++ Lite for ARM EABI

ARMv7 Thumb-2 - Little-Endian, Soft-Float

-mthumb -march=armv7 -mfix-cortex-m3-ldrdCommand-line option(s):

thumb2/Library subdirectory:

ARMv6-M Thumb - Little-Endian, Soft-Float

-mthumb -march=armv6-mCommand-line option(s):

armv6-m/Library subdirectory:

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> arm-none-eabi-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Using Flash Memory
Sourcery G++ Lite supports development and debugging of applications loaded into flash memory
on ARM EABI targets. There are three steps involved:

1. You must use an appropriate linker script that identifies the ROM memory region on your target
board, and locates the program text within that region. Refer to Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Sequence” for information about the boards supported by Sourcery
G++.

2. Next, load your program into the flash memory on your target board. You must use third-party
tools to program the flash memory.

3. Finally, when debugging a program in flash memory, GDB must be told about the ROM region
so that it knows where it must use hardware breakpoints to control program execution. If you are
using the Sourcery G++ Debug Sprite to debug your program, the Sprite does this automatically,
using the memory map provided in the board configuration file. Otherwise, you must provide this
information explicitly.

When using GDB from the command line, you can mark the flash memory as read-only by using
the command:

(gdb) mem start end ro

15

Sourcery G++ Lite for ARM EABI

where start and end define the address range of the read-only memory region.

Although GDB automatically attempts to use hardware breakpoints on code locations in the read-
only memory region, on many targets the number of available hardware breakpoints is very small.
Furthermore, GDB also uses hardware breakpoints internally to implement commands such as step,
next, and finish. Thus the number of breakpoints you can explicitly set in ROM may be fewer than
the number supported by the target system.

For example, ARM7TDMI cores support only one hardware breakpoint, which must also be used
internally by the debugger if you set any software breakpoints in RAM. On ARM9 cores, there are
two hardware breakpoints supported and one is consumed by the debugger if you set any software
breakpoints.

3.4. ARMv7-M Interrupt Handlers
Because of a discrepancy between the ARMv7-M Architecture and the ARM EABI, it is not safe to
use normal C functions directly as interrupt handlers. The EABI requires the stack be 8-byte aligned,
whereas ARMv7-M only guarantees 4-byte alignment when calling an interrupt vector. This can
cause subtle runtime failures, usually when 8-byte types are used.

Functions that are used directly as interrupt handlers should be annotated with
__attribute__((__interrupt__)). This tells the compiler to add special stack alignment
code to the function prologue.

3.5. ARM Interrupt Vectors
The ARM CS3 implementation treats all systems as address vector processors. On traditional ARM
systems (everything except M profile devices) an exception causes the processor to jump to a fixed
address. However the arrangement of these addresses is such that the CS3 code vector model is not
feasible.

The default CS3 vector table emulates an address vector system by placing an indirect branch at the
real exception vector. If you override the entire vector table (rather than individual vectors) the indirect
stubs are not included, and your replacement table is placed at address zero.

3.6. Using VFP Floating Point
3.6.1. Enabling Hardware Floating Point

GCC provides three basic options for compiling floating-point code:

• Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

• VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mfloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

• VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mfloat-abi=hard.

16

Sourcery G++ Lite for ARM EABI

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

Sourcery G++ Lite for ARM EABI includes libraries built with software floating point, which are
compatible with VFP code compiled using the soft-float ABI. While the compiler is capable of
generating code using the VFP ABI, no compatible runtime libraries are provided in Sourcery G++
Lite. However, VFP hard-float libraries built with both ABIs are available to Sourcery G++ Profes-
sional Edition subscribers.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -mfpu option. For example, -mfpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.6.2. NEON SIMD Code

Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -ftree-vectorize is not required.

3.6.3. Half-Precision Floating Point

Sourcery G++ for ARM EABI includes support for half-precision (16-bit) floating point, including
the new __fp16 data type in C and C++, support for generating conversion instructions when
compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3.7. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center1:

• BSABI - ARM IHI 0036B (10 October 2008)

1 http://infocenter.arm.com

17

Sourcery G++ Lite for ARM EABI

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

• BPABI - ARM IHI 0037B (10 October 2008)

• EHABI - ARM IHI 0038A (10 October 2008)

• CLIBABI - ARM IHI 0039A (10 October 2008)

• AADWARF - ARM IHI 0040A (10 October 2008)

• CPPABI - ARM IHI 0041B (10 October 2008)

• AAPCS - ARM IHI 0042C (10 October 2008)

• RTABI - ARM IHI 0043B (10 October 2008)

• AAELF - ARM IHI 0044C (10 October 2008)

• ABI Addenda - ARM IHI 0045B (10 October 2008)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

3.8. Object File Portability
It is possible to create object files using Sourcery G++ for ARM EABI that are link-compatible with
the GNU C library provided with Sourcery G++ for ARM GNU/Linux as well as with the Code-
Sourcery C Library or Newlib C Library provided with ARM EABI toolchains. These object files
are additionally link-compatible with other ARM C Library ABI-compliant static linking environments
and toolchains.

To use this feature, when compiling your files with the bare-metal ARM EABI toolchain define the
preprocessor constant _AEABI_PORTABILITY_LEVEL to 1 before including any system header
files. For example, pass the option -D_AEABI_PORTABILITY_LEVEL=1 on your compilation
command line. No special options are required when linking the resulting object files. When building
applications for ARM EABI, files compiled with this definition may be linked freely with those
compiled without it.

Files compiled in this manner may not use the functions fgetpos or fsetpos, or reference the
type fpos_t. This is because Newlib assumes a representation for fpos_t that is not AEABI-
compliant.

Note that object files are only portable from EABI to GNU/Linux, and not vice versa; object files
compiled for ARM GNU/Linux targets cannot be linked into ARM EABI executables.

3.9. ARM Profiling Implementation
Profiling is enabled by means of the -pg compiler option. In this mode, the compiler inserts a call
to __gnu_mcount_nc into every function prologue. However, no implementation of __gnu_
mcount_nc is provided (to do so would be impossible without knowledge of the execution envir-
onment).

You must provide your own implementation of __gnu_mcount_nc . Here are the requirements:

• On exit, pop the top value from the stack, and place it in the lr register. The sp register should
be adjusted accordingly. For example, this is how to write it as a stub function:

18

Sourcery G++ Lite for ARM EABI

 .globl __gnu_mcount_nc
 .type __gnu_mcount_nc, %function
__gnu_mcount_nc:
 mov ip, lr
 pop { lr }
 bx ip

• Preserve all other register state except for r12 and the CPSR condition code bits. In particular all
coprocessor state and registers r0-r3 must be preserved.

• Record and count all occurrences of the function calls in the program. The caller can be determined
from the lr value stored on the top of the stack (on entry to __gnu_mcount_nc), and the callee
can be determined from the current value of the lr register (i.e. the caller of this function).

• Arrange for the data to be saved to a file named gmon.out when the program exits (via atexit).
Refer to the gprof profiler manual for more information.

19

Sourcery G++ Lite for ARM EABI

Chapter 4
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ Lite from the command line.

20

4.1. Building an Application
This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-none-eabi, as indicated
by the arm-none-eabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

Compile and link this program using the command:

> arm-none-eabi-gcc -o factorial main.c -T script

Sourcery G++ requires that you specify a linker script with the -T option to build applications for
bare-board targets. Linker errors like undefined reference to `read' are a symptom of
failing to use an appropriate linker script. Default linker scripts are provided in arm-none-eabi/
lib. Refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for inform-
ation about the boards and linker scripts supported by Sourcery G++ Lite.

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-eabi-gcc with arm-none-eabi-g++.)

4.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them. Alternatively, you can use the Sourcery G++ Debug Sprite from within GDB to
download and run programs on the target via a supported hardware debugging device.

4.3. Running Applications in the Simulator
Sourcery G++ Lite includes a simulator that you can use on the host system to run programs compiled
for the target system. Since you do not need target hardware, this is the easiest way to try out Sourcery
G++.

To use the simulator run:

21

Using Sourcery G++ from the Command Line

> arm-none-eabi-run factorial

You should see the expected output:

factorial(0) = 1
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880

You can also use the simulator to execute target programs when debugging with GDB. See Section 4.4,
“Running Applications from GDB” for more information.

The simulator supports the ARMv4 (StrongARM), ARMv4T (ARM7TDMI, ARM920, ARM9TDMI),
ARMv5, and ARMv5TE (ARM926, Xscale) instruction sets. The arm-none-eabi-run simulator also
includes support for Thumb instructions.

4.4. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. You can also run and debug programs using the GDB simulator.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.4.1. Connecting to the GDB Simulator

GDB includes a simulator that allows you to debug ARM EABI applications without target hardware.
To start and connect to the simulator from within GDB, use this command:

(gdb) target sim

4.4.2. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 6, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

(gdb) target remote | arm-none-eabi-sprite arguments

Refer to Section 6.3, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

22

Using Sourcery G++ from the Command Line

4.4.3. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

4.4.4. Loading and Running Applications

Connecting to a bare-metal target or simulator from GDB does not cause your program to be loaded
into target memory. You must do this explicitly from GDB after you connect:

(gdb) load

Alternatively, you can use third-party tools to load your application into flash memory before starting
GDB.

To begin execution of your application, you should generally use the continue command:

(gdb) continue

However, you should use run instead of continue to start your program if you used target sim to
connect:

(gdb) run

23

Using Sourcery G++ from the Command Line

Chapter 5
CS3™:The CodeSourcery
Common Startup Code Sequence
CS3 is CodeSourcery's low-level board support library. This chapter describes the organiz-
ation of the system startup code and tells you how you can customize it, such as by defining
your own interrupt handlers.This chapter also documents the boards supported by Sourcery
G++ Lite and the compiler and linker options you need to use with them.

24

Many developers turn to the GNU toolchain for its cross-platform consistency: having a single system
support so many different processors and boards helps to limit risk and keep learning curves gentle.
Historically, however, the GNU toolchain has lacked a consistent set of conventions for processor-
and board-level initialization, language run-time setup, and interrupt and trap handler definition.

The CodeSourcery Common Startup Code Sequence (CS3) addresses this problem. For each supported
system, CS3 provides a set of linker scripts describing the system's memory map, and a board support
library providing generic reset, startup, and interrupt handlers. These scripts and libraries all follow
a standard set of conventions across a range of processors and boards.

In addition to providing linker support, CS3's functionality is fully integrated with the Sourcery G++
Debug Sprite. For each supported board, CS3 provides the board file containing the memory map
and initialization sequence required for debugging applications on the board via the Sprite, as docu-
mented in Section 6.9, “Supported Board Files”.

5.1. Startup Sequence
CS3 divides the startup sequence into three phases:

• In the hard reset phase, we initialize the memory controller and set up the memory map.

• In the assembly initialization phase, we prepare the stack to run C code, and jump to the C initial-
ization function.

• In the C initialization phase, we initialize the data areas, run constructors for statically-allocated
objects, and call main.

The hard reset and assembly initialization phases are necessarily written in assembly language; at
reset, there may not yet be stack to hold compiler temporaries, or perhaps even any RAM accessible
to hold the stack. These phases do the minimum necessary to prepare the environment for running
simple C code. Then, the code for the final phase may be written in C; CS3 leaves as much as possible
to be done at this point.

The CodeSourcery board support library provides default code for all three phases. The hard reset
phase is implemented by board-specific code. The assembly initialization phase is implemented by
code specific to the processor family. The C initialization phase is implemented by generic code.

5.1.1.The Hard Reset Phase

This phase is responsible for initializing board-specific registers, such as memory base registers and
DRAM controllers, or scanning memory to check the available size. It is written in assembler and
ends with a jump to _start, which is where the assembly initialization phase begins.

The hard reset code is in a section named .cs3.reset. The section must define a symbol named
__cs3_reset_sys, where sys is a name for the board being initialized; for example, the reset
code for Altera Cyclone III Cortex-M1 boards would be named __cs3_reset_cycloneiii_
cm1. The linker script defines the symbol __cs3_reset to refer to this reset address. If you need
to refer to the reset address from generic code, you can use this non-specific __cs3_reset name.

When using the Sourcery G++ Debug Sprite, the Sprite is responsible for carrying out the initialization
done in this phase. In this case execution begins at the start of the assembly initialization phase, except
for simulators as described below.

25

CS3™: The CodeSourcery Common Startup Code Sequence

Some simulators provide a supervisory operation to determine the amount of available memory. This
operation is performed in the hard reset phase. Thus for simulators, execution always begins at
__cs3_reset_sys.

The CodeSourcery board support library provides reasonable default reset code, but you may provide
your own reset code by defining __cs3_reset_sys in an object file or library, in a .cs3.reset
section.

5.1.2.The Assembly Initialization Phase

This phase is responsible for initializing the stack pointer and creating an initial stack frame. The
symbol _start marks the entry point of the assembly initialization code; this name lacks the __cs3
prefix because is the symbol traditionally used by debuggers and other integrated development en-
vironments for the address where program execution begins. The assembly initialization phase ends
with a call or jump to __cs3_start_c.

Simulators typically initialize the stack pointer and initial stack frame automatically on startup. CS3
can also support targets running a boot monitor that likewise initializes the stack before starting user
code. On these targets, CS3 does not perform the assembly initialization phase at all; instead, _start
is aliased to __cs3_reset_sys, so that execution always starts with the hard reset phase. The
hard reset phase then ends with a jump directly to __cs3_start_c.

On the other hand, on bare-board targets setting the stack pointer explicitly in the assembly initializ-
ation phase is required even if the processor itself initializes the stack pointer automatically on reset.
This is to support restarting programs from _start in the debugger.

The value of the symbol __cs3_stack provides the initial value of the stack pointer. The Code-
Sourcery linker scripts provide a default value for this symbol, which you may override by defining
__cs3_stack yourself.

The initial stack frame is created for the use of ordinary C and C++ calling conventions. The stack
should be initialized so that backtraces stop cleanly at this point; this might entail zeroing a dynamic
link pointer, or providing hand-written DWARF call frame information.

Finally, we call the C function __cs3_start_c. This function never returns, and _start need
not be prepared to handle a return from it.

As with the hard reset code, the CodeSourcery board support library provides reasonable default
assembly initialization code. However, you may provide your own code by providing a definition
for _start, either in an object file or a library.

5.1.3.The C Initialization Phase

Finally, C code can be executed. The C startup function is declared as follows:

void __cs3_start_c (void) __attribute__ ((noreturn));

In this function we take the following steps:

• Initialize all .data-like sections by copying their contents.

• Clear all .bss-like sections.

• Run constructors for statically-allocated objects, recorded using whatever conventions are usual
for C++ on the target architecture.

26

CS3™: The CodeSourcery Common Startup Code Sequence

CS3 reserves priorities from 0 to 100 for use by initialization code. You can handle tasks like en-
abling interrupts, initializing coprocessors, pointing control registers at interrupt vectors, and so
on by defining constructors with appropriate priorities.

• Call main as appropriate.

• Call exit, if it is available.

As with the hard reset and assembly initialization code, the CodeSourcery board support library
provides a reasonable definition for the __cs3_start_c function. You may override this by
providing a definition for __cs3_start_c, either in an object file or in a library.

The CodeSourcery-provided definition of __cs3_start_c can pass command-line arguments to
main using the normal C argc and argv mechanism if the board support package provides corres-
ponding definitions for __cs3_argc and __cs3_argv. For example:

int __cs3_argc;
char **__cs3_argv;

These variables should be initialized using a constructor function, which is run by __cs3_start_
c after it initializes the data segment. Use the constructor attribute on the function definition:

__attribute__((constructor))
static void __cs3_init_args (void) {
 __cs3_argc = ...;
 __cs3_argv = ...;
}

The constructor function may have an arbitrary name; __cs3_init_args is used only for illus-
trative purposes here.

If definitions of __cs3_argc and __cs3_argv are not provided, then the default __cs3_
start_c function invokes main with zero as the argc argument and a null pointer as argv.

5.2. Exit and Embedded Systems
A program running on an embedded system is usually designed never to exit — it runs until the
system is powered down. The C and C++ standards leave it unspecified as to whether exit is called
at program termination. If the program never exits, then there is no reason to include exit, facilities
to run functions registered with atexit, or global destructors. This code would never be run and
would therefore just waste space in the application.

The CS3 startup code, by itself, does not cause exit to be present in the application. It dynamically
checks whether exit is present, and only calls it if it is. If you require exit to be present, either
refer to it within your application, or add -Wl,-u,exit to the linking command line.

Similarly, code to register global destructors is only invoked when atexit is already in the execut-
able; CS3, by itself, does not cause atexit to be present. If you require atexit, either refer to it
within your application, or add -Wl,-u,atexit to the linking command line.

5.3. Memory Layout
The header file cs3.h declares variables and types that describe the layout of memory on the system
to C code. The variables are defined by the CS3 linker script or in the board support library.

27

CS3™: The CodeSourcery Common Startup Code Sequence

The following variables describe the regions of memory to be initialized at startup:

/* The number of elements in __cs3_regions. */
const size_t __cs3_region_num;

/* An untyped object, aligned on an eight-byte boundary. */
typedef unsigned char __cs3_byte_align8
 __attribute__ ((aligned (8)));

struct __cs3_region
{
 /* Flags for this region. None defined yet. */
 unsigned flags;

 __cs3_byte_align8 *init; /* Region's initial contents. */
 __cs3_byte_align8 *data; /* Region's start address. */

 /* These sizes are always a multiple of eight. */
 size_t init_size; /* Size of initial data. */
 size_t zero_size; /* Additional size to be zeroed. */
};

/* An array of memory regions. __cs3_regions[0] describes
 the region holding .data and .bss. */
extern const struct __cs3_region __cs3_regions[];

The following variables describe the area of memory to be used for the dynamically-allocated heap:

/* The addresses of these objects are the start and end of
 free space for the heap, typically following .data and .bss.
 However, &__cs3_heap_end may be zero, meaning that we must
 determine the heap limit in some other way --- perhaps via a
 supervisory operation on a simulator, or simply by treating
 the stack pointer as the limit. */
extern __cs3_byte_align8 __cs3_heap_start[];
extern __cs3_byte_align8 __cs3_heap_end[];

/* The end of free space for the heap, or zero if we haven't been
 able to determine it. It usually points to __cs3_heap_end,
 but in some configurations, may be overridden by a supervisory
 call in the reset code. */
extern void *__cs3_heap_limit;

For each region named R, cs3.h declares the following variables:

/* The start of the region. */
extern unsigned char __cs3_region_start_R[]
 __attribute__ ((aligned (8)));

/* The region's size, in bytes. */
extern const size_t __cs3_region_size_R;

At the assembly level, the linker script also defines symbols with the same names and values.

28

CS3™: The CodeSourcery Common Startup Code Sequence

If the region is initialized, then cs3.h also declares the following variables, corresponding to the
region's element in __cs3_regions:

/* The data we initialize the region with. */
extern const unsigned char __cs3_region_init_R[]
 __attribute__ ((aligned (8)));

/* The size of the initialized portion of the region. */
extern const size_t __cs3_region_init_size_R;

/* The size of the additional portion to be zeroed. */
extern const size_t __cs3_region_zero_size_R;

Any of these identifiers may actually be defined as preprocessor macros that expand to expressions
of the appropriate type and value.

Like the struct __cs3_region members, these regions are all aligned on eight-byte boundaries,
and their sizes are multiples of eight bytes.

CS3 linker scripts place the contents of sections named .cs3.region-head.R at the start of
each memory region. Note that CS3 itself may want to place items (like interrupt vector tables) at
these locations; if there is a conflict, CS3 raises an error at link time.

5.4. Interrupt Vectors and Handlers
CS3 provides standard handlers for interrupts, exceptions and traps, but also allows you to easily
define your own handlers as needed. In this section, we use the term interrupt as a generic term for
this entire class of events.

Different processors handle interrupts in various ways, but there are two general approaches:

• Some processors fetch an address from an array indexed by the interrupt number, and jump to that
address. We call these address vector processors; Cortex-M1 systems are a typical example.

• Others multiply the interrupt number by some constant factor, add a base address, and jump directly
to that address. Here, the interrupt vector consists of blocks of code, so we call these code vector
processors; PowerPC systems are a typical example.

On address vector processors, the CS3 library provides an array of pointers to interrupt handlers
named __cs3_interrupt_vector_form, occupying a section named .cs3.interrupt_
vector, where form identifies the particular processor variant the vector is appropriate for. If the
processor supports more than one variety of interrupt vector (for example, a full-length form and a
shortened form), then form identifies the variety as well. Each entry in the vector holds a reference
to a symbol named __cs3_isr_int, where int is the customary name of that interrupt on the
processor, or a number if there is no consistently used name. The library further provides a reasonable
default definition for each __cs3_isr_int handler routine.

To override an individual handler, provide your own definition for the appropriate __cs3_isr_
int symbol. The definition need not be placed in any particular object file section.

Interrupt handlers typically require special call/return and register usage conventions that are target-
specific and beyond the scope of this document. As an alternative to writing interrupt handlers in
assembly language, on some targets they may be written in C using the interrupt attribute. For
example, to override the __cs3_isr_nmi handler, use the following definition:

29

CS3™: The CodeSourcery Common Startup Code Sequence

void __attribute__ ((interrupt)) __cs3_isr_nmi (void)
{
 ... custom handler code ...
}

To override the entire interrupt vector, you can define __cs3_interrupt_vector_form,
placing the definition in a section named .cs3.interrupt_vector. The linker script reports
an error if the .cs3.interrupt_vector section is empty, to ensure that the definition of
__cs3_interrupt_vector_form occupies the proper section.

You may define the vector in C with an array of pointers using the section attribute to place it in
the appropriate section. For example, to override the interrupt vector on Altera Cyclone III Cortex-
M1 boards, make the following definition:

typedef void handler(void);
handler *__attribute__((section (".cs3.interrupt_vector")))
 __cs3_interrupt_vector_micro[] =
{ ... };

On code vector processors, we follow the same conventions, with the following exceptions:

• In addition to being named __cs3_isr_int, each interrupt handler must also occupy a section
named .cs3.interrupt_int. Naturally, each handler must fit within a single interrupt vector
entry.

• Instead of providing a default definition for __cs3_interrupt_vector_form in the library,
the linker script gathers the .cs3.interrupt_int sections together, in the proper order and
on the necessary address boundaries, and defines the __cs3_interrupt_vector_form
symbol to refer to its start.

To override an individual handler on a code vector processor, you provide your own definition for
__cs3_isr_int, placed in an appropriate section. The linker script ensures that each
.cs3.interrupt_int section is non-empty, so that placing a handler in the wrong section elicits
an error at link time.

CS3 does not allow you to override the entire interrupt vector on code vector processors, because
the code vector must be constructed by the linker script, and thus cannot come from a library or object
file. However, the portion of the linker script that constructs the interrupt vector occupies its own
file, which other linker scripts can incorporate using the INCLUDE linker script command, making
it easier to replace the linker script entirely and still take advantage of CS3's other features.

Some processors, like the Innovasic fido, use more than one interrupt vector: the processor provides
several interrupt vector pointer registers, each used in different circumstances. Each register may
point to a different vector, or some or all may share vectors.

On these processors, CS3 provides only a single pre-constructed interrupt vector, but defines a sep-
arate symbol for each interrupt vector pointer register; all the symbols point to the pre-constructed
vector by default. The CS3 startup code initializes each register from the corresponding symbol. You
can provide your own vectors by defining the appropriate symbols.

For example, the fido processor has five contexts, each of which can use its own interrupt vector;
on this architecture, CS3 defines the standard __cs3_interrupt_vector_fido symbol referring
to the pre-constructed vector, and then goes on to define per-context symbols __cs3_interrupt_
vector_fido_ctx0, __cs3_interrupt_vector_fido_ctx1, and so on, all referring to
__cs3_interrupt_vector_fido. The CS3 startup code sets each context's vector register to

30

CS3™: The CodeSourcery Common Startup Code Sequence

the value of the corresponding symbol. By default, all the contexts share an interrupt vector, but if
your code provides its own definition for __cs3_interrupt_vector_fido_ctx1, then the
startup code initializes context one's register to point to that vector instead.

This arrangement requires you to use a different approach to specify a handler for a secondary context
that differs from the corresponding handler in the primary context. For example, to handle division-
by-zero exceptions in context 1 with the function ctx1_divide_by_zero, you should write the
following:

typedef void (*handler_type) (void);
handler_type __cs3_interrupt_vector_fido_ctx1[256];
extern handler_type __cs3_interrupt_vector_fido[256];

__attribute__((interrupt))
void
ctx1_divide_by_zero (void)
{
 /* Your code here. */
}

__attribute__((constructor))
void
initialize_vector_ctx1 (void)
{
 /* Initialize our custom vector from the
 pre-constructed CS3 vector. */
 memcpy (__cs3_interrupt_vector_fido_ctx1,
 __cs3_interrupt_vector_fido,
 sizeof (__cs3_interrupt_vector_fido));

 /* Initialize custom interrupt handlers. */
 __cs3_interrupt_vector_fido_ctx1[5] = ctx1_divide_by_zero;
}

With this code in place, when a division-by-zero exception occurs in context 1, the processor calls
ctx1_divide_by_zero to handle it. Defining initialize_vector_ctx1 with the
constructor attribute arranges for CS3 to call it before calling your program's main function.

5.5. Linker Scripts
CS3 provides linker scripts for each supported board. Each board may be used in a number of different
configurations, and these are reflected in the linker script names. The linker scripts are named
board-profile-hosted.ld, where board is the name of the board, profile describes the
memory arrangement used and -hosted indicates whether hosting or semihosting is provided.

Caution

Linker scripts are required to create executable programs for ARM EABI targets. When
invoking the Sourcery G++ linker from the command line, you must explicitly supply a
linker script using the -T option; otherwise a link error results.

31

CS3™: The CodeSourcery Common Startup Code Sequence

5.5.1. Program and Data Placement

Many boards have both RAM and ROM (flash) memory devices. CS3 provides distinct linker scripts
to place the application either entirely in RAM, or in ROM where data is initialized during the C
initialization phase.

Some boards have very small amounts of RAM memory. If you use large library functions (such as
printf and malloc), you may overflow the available memory. You may need to use the ROM-
based linker scripts for such programs, so that the program itself is stored in ROM. You may be able
to reduce the total amount of memory used by your program by replacing portions of the Sourcery
G++ runtime library and/or startup code.

5.5.2. Hosting and Semihosting

CS3 is designed to support boards without an operating system. To allow functions like open and
write to work without operating system support, a semihosting feature is supported, in conjunction
with the debugger.

With semihosting enabled, these system calls are translated into equivalent function calls on your
host system. You can only use these function calls while connected to the debugger; if you try to use
them when disconnected from the debugger, you will get a hardware exception.

Semihosting requires support from the remote GDB debugging stub or agent, as well as the debugger
itself. The Sourcery G++ Debug Sprite implements semihosting for all supported devices. Semihosting
is also supported by the GDB Simulator included with Sourcery G++ Lite. However, semihosting
may not be supported by debugging stubs provided by third parties. If you are using a debug device
that communicates with GDB using the GDB remote protocol, check the documentation for your
device to see whether semihosting is supported.

A good use of semihosting is to display debugging messages. For example, this program prints a
message on the standard error stream on the host:

#include <unistd.h>

int main () {
 write (STDERR_FILENO, "Hello, world!\n", 14);
 return 0;
}

The hosted CS3 linker scripts provide the semihosting support, and as such programs linked with
them may only be run with the debugger. The unhosted CS3 linker scripts provide stub versions of
the system calls, which return an appropriate error value in errno. If such a stub system call is re-
quired in the executable, the linker also produces a warning. Such a warning may indicate that you
have left debugging code active, and that your executable is larger than it might need to be.

Some targets supported by CS3 can run a boot monitor that provides console I/O services and other
basic system calls. CS3 can also provide hosting via these facilities; where a boot monitor is supported,
this is noted in the board tables below. Unlike semihosting, hosting via the boot monitor can be used
when running programs outside of the debugger.

5.5.3. Choosing a Linker Script

When using Sourcery G++ from the command line, you must add -T script to your linking
command, where script is the appropriate linker script. For example, to target Altera Cyclone III
Cortex-M1 boards, you could link with -T cycloneiii-cm1-ram-hosted.ld.

32

CS3™: The CodeSourcery Common Startup Code Sequence

5.6. Supported Boards for ARM EABI
CS3 provides support for the following boards on ARM EABI targets.

Altera Cyclone III Cortex-M1

Cortex-M1Processor name:

-mcpu=cortex-m1 -mthumbProcessor options:

ram, rom, itcmMemory regions:

cycloneiii-cm1-ram-hosted.ldRAM HostedLinker scripts:

cycloneiii-cm1-ram.ldRAM Unhosted

cycloneiii-cm1-rom-hosted.ldROM Hosted

cycloneiii-cm1-rom.ldROM Unhosted

ARM M-profile Simulator

Cortex-M3Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ramMemory regions:

generic-m-hosted.ldHostedLinker scripts:

generic-m.ldUnhosted

ARM Simulator (VFP)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

generic-vfp-hosted.ldHostedLinker scripts:

generic-vfp.ldUnhosted

ARM Simulator

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

generic-hosted.ldHostedLinker scripts:

generic.ldUnhosted

ARMulator (RDI)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

armulator-ram-hosted.ldRAM HostedLinker scripts:

armulator-ram.ldRAM Unhosted

33

CS3™: The CodeSourcery Common Startup Code Sequence

5.7. Interrupt Vector Tables
The ARM interrupt vector table (__cs3_interrupt_vector_arm) contents are:

MeaningNameNumber

Reset entry point__cs3_reset0

Undefined Instruction__cs3_isr_undef1

Software Interrupt/Supervisor Call__cs3_isr_swi2

Prefetch Abort__cs3_isr_pabort3

Data Abort__cs3_isr_dabort4

__cs3_isr_reserved5

External Interrupt (IRQ)__cs3_isr_irq6

Fast Interrupt (FIQ)__cs3_isr_fiq7

The Microcontroller Profile interrupt vector table (__cs3_interrupt_vector_micro) contents
are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

External interrupt__cs3_isr_external_0..3116..47

5.8. Regions and Memory Sections
The following regions are defined for ARM EABI.

ContentsRegion

ITCMitcm

.data and .bss sections. In ram-based profiles, also contains .text and other program-
like sections.

ram

.text and other program-like sections. Initialization values for data-like regions.rom

34

CS3™: The CodeSourcery Common Startup Code Sequence

Note that not all regions are provided in every linker script or profile; see the documentation of the
individual linker scripts in Section 5.6, “Supported Boards for ARM EABI”, above.

Regions documented as "Memory regions" correspond to similarly-named program sections. For
example, the linker script assigns the .ram section to the ram region. You can explicitly locate data
or code in these sections using section attributes in your source C or C++ code. Section attributes
are especially useful on code compiled for boards that include special memory banks, such as a fast
on-chip cache memory, in addition to the default ram and/or rom regions. CS3 arranges for addi-
tional data-like sections to be initialized in the same way as the default .data section.

As an example to illustrate the attribute syntax, you can put a variable v in the .ram section using:

int v __attribute__ ((section (".ram")));

To declare a function f in this section, use:

int f (void) __attribute__ ((section (".ram"))) {...}

For more information about attribute syntax, see the GCC manual.

Regions documented as "Other regions" do not have a corresponding program section. Typically,
these regions correspond to memory-mapped control and I/O registers that cannot be used for general
data or program storage. If you need to manipulate data in these regions, you can use the CS3 memory
layout facilities declared in cs3.h, as described in Section 5.3, “Memory Layout”.

Memory maps for boards supported by Sourcery G++ Lite for ARM EABI are documented in XML
files in the arm-none-eabi/lib/boards/ subdirectory of your Sourcery G++ installation
directory.

35

CS3™: The CodeSourcery Common Startup Code Sequence

Chapter 6
Sourcery G++ Debug Sprite
This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite allows you to debug programs running on a bare board without an operating
system.This chapter includes information about the debugging devices and boards supported
by the Sprite for ARM EABI.

36

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM EABI. This Sprite is provided
to allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 6.3, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

6.1. Probing for Debug Devices
Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the -i option:

> arm-none-eabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
 (Sourcery G++ Lite Sourcery G++ Lite 2009q3-68)
armusb: [speed=<n:0-7>] ARMUSB device
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 6.3, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

6.2. Debug Sprite Example
Start by compiling and linking a simple test program for your target board, following the instructions
in Chapter 4, “Using Sourcery G++ from the Command Line”. Use the -g option to tell the compiler
to generate debugging information.

To build the factorial program to run on the ARMulator simulator, which can communicate
with the Sprite via the RDI protocol, use:

> arm-none-eabi-gcc -g -Tarmulator-ram-hosted.ld main.c \
 -o factorial

Next start the debugger on your host system:

> arm-none-eabi-gdb factorial

37

Sourcery G++ Debug Sprite

The command for connecting GDB to the board depends on the debug device you are using; this is
described in more detail in Section 6.3, “Invoking Sourcery G++ Debug Sprite”. If you are connecting
via RDI, you must specify the full path to the RDI library file and configuration file for that library.
Use quotes to escape the Sprite argument syntax from the shell. For example, use a command like
this to connect to the ARMulator:

(gdb) target remote | arm-none-eabi-sprite \
 "rdi:///?rdi-library=library&rdi-config=config" armulator

The Sprite prints some status messages as it connects to your debug device and target board. If the
connection is successful, you should see output similar to:

arm-none-eabi-sprite:Target reset
0x00008936 in ?? ()
(gdb)

Next, use GDB to load your program onto the target board.

(gdb) load

At this point you can use GDB to control the execution of your program as required. For example:

(gdb) break main
(gdb) continue

6.3. Invoking Sourcery G++ Debug Sprite
The Debug Sprite is invoked as follows:

> arm-none-eabi-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery G++ Lite for ARM EABI:

rdi Use an RDI debugging device. Refer to Section 6.5, “Remote Debug Interface
Devices”.

flashpro Use a FlashPro debugging device. Refer to Section 6.6, “Actel FlashPro Devices”.

altera Use an Altera FPGA. Refer to Section 6.7, “Altera Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's

38

Sourcery G++ Debug Sprite

board directory is searched for a matching file. See Section 6.9, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the -b option to list the available board files. You
can also write a custom board file; see Section 6.10, “Board File Syntax” for more information about
the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

6.4. Sourcery G++ Debug Sprite Options
The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-none-eabi-sprite ... command, you do not need
this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

6.5. Remote Debug Interface Devices
Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the device-url is specified as follows:

rdi:[///][?device-options]

The following device-options are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=configfile Specify a file containing configuration information for library.
The format of this file is specific to the RDI library you are using,

39

Sourcery G++ Debug Sprite

but tends to constitute a list of key=value pairs. Consult the
documentation of your RDI library for details.

6.6. Actel FlashPro Devices
On Windows hosts, Sourcery G++ Lite supports FlashPro devices used with Actel Cortex-M1 devel-
opment kits.

For FlashPro devices, the device-url has the following form:

flashpro:[//usb12345/][?jtagclock=rate]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the -i switch, as follows:

> arm-none-eabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
rate is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

6.6.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-none-eabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro device
 flashpro://usb12345/ - FlashPro Device
 ...

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

6.7. Altera Devices
The Debug Sprite can be used to debug applications running on a Cortex-M1 core embedded in an
Altera FPGA supporting the System-Level Debug (SLD) architecture. Currently, the Sprite supports
the Cyclone III FPGA Starter board on Microsoft Windows hosts.

The Debug Sprite accepts two forms of the device-url for Altera devices. For the common case
where you have only one Altera Cortex-M1 device configured, you can use simply:

altera://

40

Sourcery G++ Debug Sprite

The full form of the device-url is:

altera://usbX/hubY/nodeZ

where X, Y, and Z are non-negative integers. The SLD architecture forms a hierarchy; there may be
multiple USB Blaster devices (numbered by X), multiple Altera FPGAs (numbered by Y) per USB
Blaster, and multiple nodes (numbered by Z) per FPGA.

The Debug Sprite can autodetect connected Altera Cortex-M1 devices. Invoking the Sprite with the
-i option, as described in Section 6.1, “Probing for Debug Devices”, displays the device-url
for each detected device:

> arm-none-eabi-sprite -i
...
altera: Altera SLD Hub device
 altera://usb0/hub0/node1 - Altera Cortex-M Device

6.7.1. Setting Up the Altera Device

Follow these steps for initial installation and set up of the Altera device.

1. Install Quartus II Web Edition (or any equivalent), available from Altera.

2. Install drivers for USB Blaster, also available from Altera.

3. Install Sourcery G++ Lite for ARM EABI. See Chapter 2, “Installation and Configuration”.

4. Connect the board and the host computer with a USB cable.

5. Turn on the board.

6. Use Quartus II to download a .sof file including a Cortex-M1 core to the FPGA.

7. Use arm-none-eabi-sprite -i to verify that the Sprite can detect the installed Cortex-M1 core.

6.7.2. Hardware Breakpoints

The Cortex-M1 core only permits hardware breakpoints to be set in the first 512MB of its address
space. Because both external SRAM and flash memory are located at higher addresses, you cannot
set hardware breakpoints in these memory regions.

6.8. Debugging a Remote Board
You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-none-eabi-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000.

41

Sourcery G++ Debug Sprite

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base1.

6.9. Supported Board Files
The Sourcery G++ Debug Sprite for ARM EABI includes support for the following target boards.
Specify the appropriate board-file as an argument when invoking the sprite from the command
line.

ConfigBoard

cycloneiii-cm1Altera Cyclone III Cortex-M1

armulatorARMulator (RDI)

6.10. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-none-eabi/lib/boards directory in
the installation. Refer to the files in that directory for examples.

The file's DTD is:

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery G++. No other use is permitted.
 -->

<!ELEMENT board
 (properties?, feature?, initialize?, memory-map?)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >

1 https://support.codesourcery.com/GNUToolchain/kbentry132

42

Sourcery G++ Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

43

Sourcery G++ Debug Sprite

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vfp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arm11, and
cortex.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

44

Sourcery G++ Debug Sprite

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

45

Sourcery G++ Debug Sprite

Chapter 7
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

46

7.1. Sourcery G++ Subscriptions
CodeSourcery offers two levels of Sourcery G++ subscriptions. Professional Edition subscriptions
include unlimited support, with no per-incident fees. CodeSourcery's support is provided by the same
engineers who build Sourcery G++, and covers questions about installing and using Sourcery G++,
the C and C++ programming languages, and all other topics relating to Sourcery G++. CodeSourcery
provides updated versions of Sourcery G++ on demand to resolve critical problems reported by
Professional Edition subscribers. Personal Edition subscriptions do not include support, but do include
access to updates as long as the subscription remains active.

Subscription editions of Sourcery G++ also include many additional features not included in the free
Lite editions:

• Sourcery G++ IDE. The Sourcery G++ IDE, based on Eclipse, provides a fully visual envir-
onment for developing applications, including an automated project builder, syntax-highlighting
editor, and a graphical debugging interface. The debugger provides features especially useful to
embedded systems programmers, including the ability to step through code at both the source and
assembly level, view registers, and examine stack traces. CodeSourcery's enhancements to Eclipse
include improved support for hardware debugging via JTAG or ICE units and complete integration
with the rest of Sourcery G++.

• Debug Sprites. Sourcery G++ Debug Sprites provide hardware debugging support using JTAG
and ICE devices. On some systems, Sourcery G++ Sprites can automatically program flash memory
and display control registers. Debug Sprites included in Lite editions of Sourcery G++ include
only a subset of the functionality of the Sprites in the subscription editions.

• CS3. CS3 provides a uniform, cross-platform approach to board initialization and interrupt
handling on bare-metal ELF and EABI platforms. Subscription versions of Sourcery G++ include
CS3 support for an expanded set of boards. In addition, the Sourcery G++ Board Builder allows
you to extend the power of CS3 to cover custom board definitions. The Board Builder is fully in-
tegrated with the Sourcery G++ IDE and Debug Sprites.

• CodeSourcery C Library. Subscription versions of Sourcery G++ for bare-metal targets include
the CodeSourcery C Library, a proprietary library implementation that is optimized to be smaller
and faster than the Newlib C library included with Lite editions of Sourcery G++.

• QEMU Instruction Set Simulator. The QEMU instruction set simulator can be used to run
— and debug — programs even without target hardware. Most bare-metal configurations of
Sourcery G++ include QEMU and linker scripts targeting the simulator. Configurations of Sourcery
G++ for GNU/Linux targets include a user-space QEMU emulator that runs on Linux hosts.

• Sysroot Utilities. Subscription editions of Sourcery G++ include a set of sysroot utilities for
GNU/Linux targets. These utilities simplify use of the Sourcery G++ dynamic linker and shared
libraries on the target and also support remote debugging with gdbserver.

• GNU/Linux Prelinker. For select GNU/Linux target systems, Sourcery G++ includes the
GNU/Linux prelinker. The prelinker is a postprocessor for GNU/Linux applications which can
dramatically reduce application launch time. CodeSourcery has modified the prelinker to operate
on non-GNU/Linux host systems, including Microsoft Windows.

• Library Reduction Utility. Sourcery G++ also includes a Library Reduction Utility for
GNU/Linux targets. This utility allows the GNU C Library to be relinked to include only those
functions used by a given collection of binaries.

47

Next Steps with Sourcery G++

• Additional Libraries. For some platforms, additional run-time libraries optimized for particular
CPUs are available. Pre-built binary versions of the libraries with debug information are also
available to subscribers.

• Additional Documentation. Subscription customers receive expanded access to the Sourcery
G++ Knowledge Base, covering many more tips, howtos, and application notes to help you make
the best use of Sourcery G++.

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portal1. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

7.2. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal2.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

7.3. Manuals for GNU Toolchain Components
Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-eabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-eabi/man/man1

Then you can invoke man as:

> man ./arm-none-eabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

1 https://support.codesourcery.com/GNUToolchain/
2 https://support.codesourcery.com/GNUToolchain/

48

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a --help option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

49

Next Steps with Sourcery G++

Appendix A
Sourcery G++ Lite Release Notes
This appendix contains information about changes in this release of Sourcery G++ Lite for
ARM EABI.You should read through these notes to learn about new features and bug fixes.

50

A.1. Changes in Sourcery G++ Lite for ARM
EABI
This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 2009q3-68

Out-of-range branch error. A compiler bug has been fixed that caused out-of-range branch errors
from the assembler. The bug only affected code compiled in Thumb-2 mode.

A.1.2. Changes in Sourcery G++ Lite 2009q3-64

GDB crash fix. A GDB bug has been fixed that caused GDB to crash when unloading shared
libraries or switching executables.

@FILE fix. A bug has been fixed in the processing of @FILE command-line options by GCC,
GDB, and other tools. The bug caused any options in FILE following a blank line to be ignored.

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

NEON improvements. The compiler now generates improved NEON vector code when copying
memory or storing constants to memory using the NEON coprocessor. The compiler also generates
better code for accessing data arrays that are not known to have 64-bit alignment. In addition, a bug
that caused internal compiler errors when compiling for Thumb-2 with NEON enabled has been
fixed, as has another bug that caused some vector shift NEON operations to be wrongly rejected.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has been
fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

Compiler errors with float32_t. A bug has been fixed that caused compiler errors when
using the float32_t type from arm_neon.h.

Support for ARM Cortex-A5 cores. Sourcery G++ now includes basic support for ARM Cortex-
A5 cores. Use the -mcpu=cortex-a5 command-line option.

Static variables and asm statements bug fix. A bug in GCC that caused functions containing
static variables and asm statements to be miscompiled at -O2 or above has been fixed. The bug also
occurred at other optimization levels when the -fremove-local-statics command-line option
was used.

Linker script fixes. A bug in CS3 linker scripts for simulator profiles has been fixed. The bug
resulted in data memory being too small, which sometimes caused the stack to be overwritten during
initialization, or reduced space for malloc to allocate.

Warnings for naked functions. A compiler bug that resulted in incorrect warnings about missing
return statements in non-void functions declared with the naked attribute has been fixed.

Optimizer bug fix. A bug in GCC that caused functions with complex loop nests to be miscompiled
at -O2 or above has been fixed. The bug also occurred at other optimization levels when the
-fpromote-loop-indices command-line option was used.

51

Sourcery G++ Lite Release Notes

VFPv4 support. Sourcery G++ now includes support for VFPv4, VFPv4-D16 and NEON-VFPv4
coprocessors. Use the -mfpu=vfpv4, -mfpu=vfpv4-d16 or -mfpu=neon-vfpv4 options,
respectively.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

Flash programming support on Atmel AT91SAM7Sxxx. The Sourcery G++ Debug Sprite
now supports flash programming on Atmel AT91SAM7Sxxx when using SEGGER J-Link devices.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.3. Changes in Sourcery G++ Lite 2009q3-37

Improved optimization for ARM. GCC now automatically enables loop unrolling and
-fpromote-loop-indices when -O2 or -O3 is specified. Loop unrolling is limited at -O2
to control code growth. These changes improve performance by more than 5%.

VFP assembly mnemonics. The assembler now accepts unified assembly mnemonics for VFP
instructions (e.g. VADD.f32 s0, s0) in legacy syntax mode.

ARM Cortex-R4F assembler bug fix. The assembler now correctly recognizes the
-mcpu=cortex-r4f command-line option to select the Cortex-R4F processor.

VFP half-precision extensions. Sourcery G++ now includes support for VFP coprocessors with
half-precision floating-point extensions. This can be enabled with the -mfpu=vfpv3-d16-fp16
or -mfpu=vfpv3-fp16 command-line options.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

Improved optimization for Thumb-2. GCC now supports instruction scheduling for Thumb-2
code. This optimization is enabled when compiling with -O2, -O3, or -Os, and can improve per-
formance substantially.

ARM VFP assembler bug fix. The assembler now correctly assembles the vmls, vnmla and
vnmls mnemonics. Previously these were incorrectly assembled to different instructions.

GDB finish internal error. A bug has been fixed that caused a GDB internal error when using
the finish command. The bug occurred when debugging optimized code.

Linking objects built without -fPIC into shared libraries. The linker now gives an error for
attempts to link object files built without -fPIC or -fpic into shared libraries when those objects
use the ARMv7 MOVW and MOVT instructions in ways that are unsafe in a shared library. Previously
it built a shared library that behaved incorrectly when used.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

New assembler directive .inst. The assembler now accepts the new .inst directive to gen-
erate an instruction from its integer encoding.

52

Sourcery G++ Lite Release Notes

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

Remote debugging hardware watchpoint bug fix. A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

Internal error in assembler. An assembler bug that caused an internal error when .thumb or
.arm appears after an invalid instruction has been fixed.

GDB internal warning fix. A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

Incorrect linker diagnostic removed. The linker has been corrected to not emit an error message
when the load address of an output section with no contents overlaps an output section with contents.
This can occur in linker scripts that use MEMORY regions and AT> to place initialized contents into
ROM.

Improved bit counting operation. The __builtin_ctz built-in function, which returns the
number of trailing zero bits in a value, has been improved to use a shorter instruction sequence for
ARMv6T2 and later.

Out-of-range branch errors. A Thumb-2 code generation defect in the compiler that caused
branch out of range errors from the assembler has been eliminated.

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Linker fix. The linker now correctly processes references to undefined local symbols. Such ref-
erences are treated the same as references to undefined global symbols. Usually object files contain
no such references, as they can never be satisfied.

Assembler validation improvements. The assembler now issues a warning when a section finishes
with an unclosed IT instruction block at the end of the input file. It also now rejects unwinding dir-
ectives that appear outside of a .fnstart/.fnend pair. Additionally, 32-bit Thumb instructions
are now correctly rejected when assembling for cores that do not support these instructions.

Destructor function bug fix. A bug in CS3 has been fixed that caused functions with the
destructor attribute not to be run on program termination.

Assembler validations fix. A bug in the assembler that caused some addw and subw instructions
with SP or PC as operand to be wrongly rejected has been fixed.

-mauto-it assembler option replaced with -mimplicit-it . The -mauto-it command-
line option to the assembler has been replaced with a more general -mimplicit-it option to
control the behavior of the assembler when conditional instructions appear outside an IT instruction
block. If you were previously using -mauto-it, you should now use -mimplicit-it=always.
Other -mimplicit-it modes allow you to separately control implicit IT instruction insertion
behavior in ARM and Thumb-2 code. For more information, refer to the assembler manual. In addition
to renaming the option, a number of bugs in the implicit IT generation have been fixed.

GDB backwards compatibility fix. A bug has been fixed that caused GDB to crash when loading
symbols from binaries built by very old versions of GCC.

53

Sourcery G++ Lite Release Notes

Linker failure with Cortex-A8 erratum fix. A bug in the --fix-cortex-a8 linker option
has been fixed. The bug caused the linker either to produce a bad value error, or to silently gen-
erate an incorrect executable.

Debug information for variadic functions. A compiler bug that resulted in incorrect debug in-
formation for functions with variable arguments has been fixed.

Overlay sections. arm-none-eabi-readelf now correctly recognizes section headers for ARM_
DEBUGOVERLAY and ARM_OVERLAYSECTION sections.

Code generation improvements. The compiler has been changed to make better use of VFP re-
gisters in mixed integer and floating-point code, resulting in faster code.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Startup code debugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

Assembler fix for mixed Thumb and ARM mode. A bug in the assembler has been fixed where
mapping symbols were sometimes incorrectly placed at section boundaries. This could lead to incorrect
disassembly in some cases.

C++ exception matching. A C++ conformance defect has been fixed. According to clause 15.3
of the standard, given a derived class D with base B, a thrown D * object is not caught by a handler
with type B *& (that is, a reference to pointer B). The compiler formerly treated this case incorrectly
as if the handler had type B *, which does catch D *.

-fremove-local-statics optimization. The -fremove-local-statics optimization
is now enabled by default at -O2 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8];).

Linker bug fix. A bug that caused the linker to crash when .ARM.exidx sections were discarded
by a linker script has been fixed.

Configuration file required for Debug Sprite. When invoking the Sourcery G++ Debug Sprite
from the command line, it is now required to specify a board configuration file argument. This change
eliminates a source of confusion and errors resulting from accidental omission of the configuration
file argument, since recent improvements to debugger functionality depend on properties specified
in the configuration file. Refer to Chapter 6, “Sourcery G++ Debug Sprite” for more details on in-
voking the Sourcery G++ Debug Sprite from the command line.

GCC version 4.4.1. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.4.1. For
more information about changes from GCC version 4.3 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.4/changes.html.

Watchpoint support. The Sourcery G++ Debug Sprite now implements watchpoints on all cur-
rently-supported debugging devices.

54

Sourcery G++ Lite Release Notes

Linker map address sorting. The map generated by the linker -Map option now lists symbols
sorted by address.

Assembler fix. The assembler now correctly diagnoses a missing operand to bl and blx instruc-
tions. Previously, incorrect code was silently generated.

A.1.4. Changes in Sourcery G++ Lite 2009q1-161

Incorrect placement of linker-generated functions. A bug that caused some linker-generated
functions (including stubs to support interworking from ARM mode to Thumb mode and stubs to
avoid processor errata) to be placed in data sections has been fixed.

ARMulator support. CS3 now includes support for using the ARMulator via the Sourcery G++
Debug Sprite using the RDI protocol.

New option for automatically generating IT blocks. The assembler now allows use of condi-
tional Thumb-2 instructions without requiring explicit IT instructions. Use the -mauto-it command-
line option to enable this automatic generation of IT instructions.

Optimized memcpy. The Newlib implementation of memcpy has been optimized to increase
performance on ARM targets that support prefetch instructions.

Support for Cortex-M0. Sourcery G++ Lite now includes support for Cortex-M0 processors.
To compile for these processors, use -mcpu=cortex-m0 -mthumb.

Incorrect code when using -falign-labels . A bug that caused the compiler to generate
incorrect code for switch statements when the -falign-labels option is used has been fixed.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Linker script load address processing. A bug in the linker has been fixed affecting linker scripts
using AT>region to set the load address. This now follows the documented behavior of maintaining
the virtual address to load address difference in output section statements. Refer to the "Output
Section LMA" section of the linker manual for details of how to control the load address.

Debug section placement. A linker script bug in CS3 has been fixed that caused .debug_
ranges debug sections to be misplaced.

Assembler bug fix. A bug in the assembler that caused duplicate and missing mapping symbols
has been fixed. The bug caused incorrect objdump output and incorrect byte-swapping for BE8
configurations.

Multiple flash regions. A bug in the CS3 linker scripts affecting boards with multiple flash
devices has been fixed. The bug caused initialization code to treat certain flash devices as normal
memory.

Stack backtracing and C++ exception handling. Improvements have been made to the linker
in support of C++ runtime exception handling and stack backtracing. A problem that caused crashes
during the backtrace of C routines that were not compiled with the -fexceptions option has
been fixed. In addition, the linker generates more compact stack unwinding tables which can lead
to smaller executables.

Assembler floating-point format. The assembler now defaults to VFP format for floating-point
numbers. It previously defaulted to the legacy FPA format if no -mcpu or -march option was

55

Sourcery G++ Lite Release Notes

specified, or if a CPU with no floating-point unit was specified. This bug resulted in incorrect beha-
vior of the .double and .dcb.d directives.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (such
as stubs to support interworking from ARM mode to Thumb mode) to contain only nop instructions
instead of correct code sequences has been fixed.

Assembler diagnostics for invalid instructions. The assembler now issues diagnostics for invalid
ADR and ADRL instructions. Formerly, these invalid instructions were silently mis-assembled. This
assembler bug did not affect correct code.

Sprite's failure to reset the target. A bug has been fixed that sometimes caused the Sourcery
G++ Debug Sprite to fail to reset the target when using the multiple sequential connection feature
(enabled via the -m command-line option). This problem was specific to running the Debug Sprite
on Microsoft Windows hosts.

Optimized memcpy and memset routines. The Newlib implementations of memcpy and
memset have been optimized to increase performance on ARM targets.

Loop optimization improvements. A new option, -fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

Disassembler bug fix. A bug has been fixed that caused incorrect disassembly of some object
files with multiple sections whose symbol tables included symbols in the middle of functions. These
typically resulted from hand-written assembly.

DMB, DSB, and ISB instructions on ARMv6-M. The assembler now accepts the DMB, DSB, and
ISB instructions on ARMv6-M CPUs, including Cortex-M0 and Cortex-M1. These instructions
were incorrectly rejected on these CPUs in previous releases.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug_str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

Linker crash with very large applications. A linker bug that caused a crash when linking very
large applications with the --fix-cortex-a8 command-line option has been fixed.

Assembler marking of data. Data generated using the assembler directives .ascii, .asciz,
.dc.d, .dc.s, .dc.x, .dcb, .dcb.b, .dcb.d, .dcb.l, .dcb.s, .dcb.w, .dcb.x, .ds,
.ds.b, .ds.d, .ds.l, .ds.p, .ds.s, .ds.w, .ds.x, .double, .fill, .float, .incbin,
.single, .space, .skip, .string, .string8, .string16, .string32, .string64,
and .zero is now correctly marked by the assembler as data rather than code. This fixes incorrect
byte-swapping of such data when linking for BE8 configurations.

arm-none-eabi-objcopy bug fix. A bug has been fixed that caused arm-none-eabi-objcopy to
issue an error when generating output in the Intel HEX format and using --change-section-lma
to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

56

Sourcery G++ Lite Release Notes

VFP ABI support. Sourcery G++ now supports the VFP variant of the Procedure Call Standard
for the ARM® Architecture (AAPCS) in addition to the default soft-float ABI. The VFP ABI uses
VFP registers to pass function arguments and return values, resulting in faster floating-point code.
Code compiled with the VFP ABI is not compatible with the soft-float ABI libraries provided with
Sourcery G++ Lite; however, VFP ABI libraries for little-endian ARM v7-A processors are now
available as add-ons for Sourcery G++ Professional Edition. For further information about floating-
point compiler, ABI and library support in Sourcery G++, refer to Section 3.6.1, “Enabling Hardware
Floating Point”.

Cortex-A8 erratum workaround enabled for ARMv7-A. The workaround for the erratum in
Cortex-A8 processors mentioned below is now enabled by default if you are targeting the ARMv7-
A architecture profile. The workaround can be disabled by passing the --no-fix-cortex-a8
option to the linker.

Improved vectorization. Automatic vectorization for NEON now uses the fused multiply-add
(VMLA) and fused multiply-subtract (VMLS) instructions. These fused instructions are faster than the
equivalent two-instruction sequence consisting of a multiply followed by an add or subtract.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can't do that without a process to debug. when debugging a core dump file.

Out-of-bounds accesses to stack arrays. A bug has been fixed that caused internal compiler
errors when some code involving out-of-bounds accesses to stack-allocated arrays was compiled
with the -mthumb option. Such code is not valid C; although it is now accepted by the compiler
and no diagnostic is issued, it has undefined behavior if executed.

Erratum workaround for Cortex-A8 processors. The linker now implements a workaround
for an erratum in Cortex-A8 processors. If you are targeting an affected part and wish to use the
workaround, pass the --fix-cortex-a8 option to the linker. Please contact ARM for further
details of the erratum.

Maximum code alignment increased. The maximum allowed code alignment has been increased
from 32 to 64 bytes. This change affects the .p2align and .align directives in GAS and the
-falign-functions GCC option.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

A.1.5. Changes in Sourcery G++ Lite 2009q1-116

Linking big-endian programs for ARMv7-A. When linking for ARMv7-A targets with
-mbig-endian, Sourcery G++ now implicitly assumes BE8 mode, rather than BE32.

GCC version 4.3.3. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.3.3. This
is a bug fix update to GCC. For more information about changes from GCC version 4.3.2 that was
included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Improved NOP generation for Thumb-2 cores. The assembler now generates Thumb-2/ARMv6K
architectural NOP instructions when alignment padding is required in code sections.

57

Sourcery G++ Lite Release Notes

Internal compiler error with -O3 or -fpredictive-commoning. A bug has been fixed
that caused internal compiler errors when compiling some code with -O3 or
-fpredictive-commoning.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on ARM EABI targets.
This includes processors for which Sourcery G++ Lite does not include appropriate run-time libraries.
These changes are intended to simplify processor and board selection. For the full list of boards
supported by CS3, refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eq and xor_eq
were used in contexts where the preprocessor converts their names to strings.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

CS3 bug fix. A bug in CS3 has been fixed that caused a write to invalid address on program
startup for all hosted targets.

Altera device detection. A bug in the Sourcery G++ Debug Sprite has been fixed. The bug
showed a spurious error when an Altera device without an SLD hub was connected to the host.

Interrupting the target from the debugger. GDB has been improved to be more responsive to
attempts to interrupt the target (as by a Ctrl+C when using GDB from the command line) during
execution of programs using semihosting.

Linker errors on non-ELF input. A bug has been fixed that caused internal errors from the
linker when linking non-ELF input files (with the -b or --format linker options).

Undefined weak references in shared libraries. A linker bug has been fixed affecting calls from
Thumb code in shared libraries to functions that are undefined weak references when the shared
library is linked. Such calls executed as nops whether or not the functions were defined at run time.

Improved code generation. The compiler has been improved to generate better code for an integer
multiplication whose result feeds into an addition.

Newlib update. The Newlib package has been updated to version 1.17.0, with additions from the
community CVS trunk as of 2009-02-24. This update provides new C99 wide-character functions;
POSIX regex functions; string-function performance improvements; an improved sprintf imple-
mentation that no longer requires I/O functions like _open, _write, and _close; and other bug
fixes and improvements. For more information, refer to the Newlib C Library and Math Library
manuals, and to the Newlib web site at http://sourceware.org/newlib/.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Performance improvements. Tuning parameters for ARM code generation have been adjusted
to improve performance of the generated code.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

58

Sourcery G++ Lite Release Notes

Remote debugging connection auto-retry. The target remote command within GDB now uses
a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding race
conditions when the remote GDB stub or GDB server is launched simultaneously with GDB. The
auto-retry behavior is enabled by default; refer to the GDB manual for details.

CMP Thumb-2 instruction. The assembler no longer issues an error about CMP instructions in
which the second argument is the stack pointer (r13), as these are valid instructions. However, use
of the stack pointer in this context is deprecated in the current ARM architecture specification and
the assembler now warns about the deprecated use.

Thumb half-precision floating point bug fix. A compiler bug has been fixed that formerly
caused incorrect code to be generated in Thumb mode for functions using half-precision floating-
point constants. The bug did not affect Thumb-2 code.

Improved code generation. The compiler has been improved to generate better code for integer
multiplication by certain constants.

Support for Keil MCB2130 and MCB2140 boards. CS3 now includes support for Keil MCB2130
and MCB2140 boards.

Thumb-2 switch code generation bug fix. A bug has been fixed that caused incorrect Thumb-
2 code to be generated for some switch statements.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Internal compiler error with large NEON types. A bug has been fixed that caused internal
compiler errors when compiling code using NEON types at least 32 bytes wide.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPDIR variables were set to
a suitable directory.

Vectorized shift fix. A bug has been fixed that caused incorrect code for loops containing a right
shift by a constant. The bug affected code compiled with -mfpu=neon and loop vectorization enabled
with -O3 or -ftree-vectorize.

Incorrect code for nested functions. A bug in GCC that caused the compiler to generate incorrect
code for nested functions has been fixed. The bug resulted in incorrect stack alignments in the affected
functions.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

ARM build attributes conformance improvements. Several ARM EABI 2.07 conformance
issues relating to the handling of build attributes in the assembler and linker have been fixed. All
build attribute types are now recognized, and can now be declared by name, in addition to by number.
Support for merging attributes in the linker has been improved, and the linking of incompatible objects
is now detected and rejected in more cases.

59

Sourcery G++ Lite Release Notes

VFP initialization for i.MX31. The CS3 startup code for i.MX31 now automatically enables the
ARM VFP coprocessor.

Internal compiler error with -fremove-local-statics. An internal compiler error that
occurred when using the -fremove-local-statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

Linker crash on incompatible input files. Some third-party compilers, including ARM
RealView® 4.0, produce a build attribute marking output files that are not compatible with the ABI
for the ARM Architecture. This attribute sometimes caused the linker to crash. The linker now cor-
rectly issues an error message.

A.1.6. Changes in Sourcery G++ Lite 2008q3-66

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the -a option) on Windows hosts has been fixed.

Reduced RAM usage for semihosting. The previous change to add support for command-line
arguments in semihosted applications increased RAM requirements for all programs using semihosting.
This feature has been reimplemented to substantially reduce the amount of additional memory required.

Optimizer bug fix. A bug that caused an unrecognizable insn internal compiler error
when compiling at optimization levels above -O0 has been fixed.

VFP compiler fix. A compiler bug that resulted in internal compiler error: output_
operand: invalid expression as operand when generating VFP code has been fixed.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

Profiling support added. The -pg option is now supported by the compiler. You are required
to provide a function named __gnu_mcount_nc. For more details, see Section 3.9, “ARM Profiling
Implementation”.

Workaround for Cortex-M3 CPU errata. Errata present in some Cortex-M3 cores can cause
data corruption when overlapping registers are used in LDRD instructions. The compiler avoids
generating these problematic instructions when the -mfix-cortex-m3-ldrd or
-mcpu=cortex-m3 command-line options are used. The Sourcery G++ runtime libraries have
also been updated to include this workaround.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "name"
outside of ELF segments for such binaries; the warning has now been fixed.

Misaligned NEON memory accesses. A bug has been fixed that caused the compiler to use
aligned NEON load/store instructions to access misaligned data when autovectorizing certain loops.
The bug affected code compiled with -mfpu=neon and loop vectorization enabled with -O3 or
-ftree-vectorize.

Sprite crash on error. A bug has been fixed which sometimes caused the Sourcery G++ Debug
Sprite to crash when it attempted to send an error message to GDB.

60

Sourcery G++ Lite Release Notes

Portable object file fixes. Bugs in the limits.h, stdlib.h, time.h, and setjmp.h
headers have been fixed. These bugs caused compilation errors when using -D_AEABI_
PORTABILITY_LEVEL=1, as described in Section 3.8, “Object File Portability”.

Persistent remote server connections. A GDB bug has been fixed that caused the target exten-
ded-remote command to fail to tell the remote server to make the connection persistent across program
invocations.

A.1.7. Changes in Sourcery G++ Lite 2008q3-39

Definition of va_list. In order to conform to the ABI for the ARM Architecture, the definition
of the type of va_list (defined in stdarg.h) has been changed. This change impacts only the
mangled names of C++ entities. For example, the mangled name of a C++ function taking an argument
of type va_list, or va_list *, or another type involving va_list has changed. Since this is
an incompatible change, you must recompile and relink any modules defining or using affected va_
list-typed entities.

Thumb-2 assembler fixes. The Thumb-2 encodings of QADD, QDADD, QSUB, and QDSUB have
been corrected. Previous versions of the assembler generated incorrect object files for these instruc-
tions. The assembler now accepts the ORN, QASX, QSAX, RRX, SHASX, SHSAX, SSAX, USAX,
UHASX, UQSAX, and USAX mnemonics. The assembler now detects and issues errors for invalid
uses of register 13 (the stack pointer) and register 15 (the program counter) in many instructions.

Printing casted values in GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Improved support for debugging RealView® objects . GDB support for programs compiled
by the ARM RealView® compiler has been improved.

Binutils support for DWARF Version 3. The addr2line command now supports binaries con-
taining DWARF 3 debugging information. The ld command can display error messages with source
locations for input files containing DWARF 3 debugging information.

NEON improvements. Several improvements and bug fixes have been made to the NEON Ad-
vanced SIMD Extension support in GCC. A problem that caused the autovectorizer to fail in some
circumstances has been fixed. Also, many of the intrinsics available via the arm_neon.h header
file now have improved error checking for out-of-bounds arguments, and the vget_lane intrinsics
that return signed values now produce improved code.

NEON compiler fix. A compiler bug that resulted in incorrect NEON code being generated has
been fixed. Typically the incorrect code occurred when NEON intrinsics were used inside small if
statements.

Connecting to the target using a pipe. A bug in GDB's target remote | program command
has been fixed. When launching the specified program failed, the bug caused GDB to crash, hang,
or give a message Error: No Error.

Mixed-case NEON register aliases. An assembler bug that prevented NEON register aliases
from being created with mixed-case names using the .dn and .qn directives has been fixed. Previ-
ously only aliases created with all-lowercase or all-uppercase names worked correctly.

61

Sourcery G++ Lite Release Notes

Newlib manuals. The documentation packaged with Sourcery G++ Lite now includes the
Newlib C Library and Math Library manuals.

Object file portability. Sourcery G++ for ARM EABI can now produce object files that are link-
compatible with the GNU C Library included with Sourcery G++ for ARM GNU/Linux. These object
files are additionally link-compatible with other ARM C Library ABI-compliant static linking envir-
onments and toolchains. For additional information, refer to Section 3.8, “Object File Portability”.

Janus 2CC support. GCC now includes a work-around for a hardware bug in Avalent Janus
2CC cores. To compile and link for these cores, use the -mfix-janus-2cc compiler option. If
you are using the linker directly use the --fix-janus-2cc linker option.

ARM exception handling bug fix. A bug in the runtime library has been fixed that formerly
caused throwing an unexpected exception in C++ to crash instead of calling the unexpected exception
handler. The bug only affected C++ code compiled by non-GNU compilers such as ARM RealView®.

Simulation of programs with command-line arguments. When using the simulator, command-
line arguments are now correctly passed to the simulator program via argc and argv.

Mangling of NEON type names. A bug in the algorithm used by the C++ compiler for mangling
the names of NEON types, such as int8x16_t, has been fixed. These mangled names are used
internally in object files to encode type information in addition to the programmer-visible names of
the C++ variables and functions. The new mangled name encoding is more compact and conforms
to the ARM C++ ABI.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Half-precision floating point. Sourcery G++ now includes support for half-precision floating
point via the __fp16 type in C and C++. The compiler can generate code using either hardware
support or library routines. For more information, see Section 3.6.3, “Half-Precision Floating Point”.

A.1.8. Changes in Sourcery G++ Lite 2008q3-12

Stellaris UDMAERR interrupt vector. The name of the UDMAERR (uDMA Error) interrupt
vector provided by CS3 for Luminary Micro Stellaris configurations has been corrected. The correct
name is __cs3_isr_udmaerr.

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, improved
Thumb mode support, the new find command to search memory, the new /m (mixed source and
assembly) option to the disassemble command, and the new macro define command to define C
preprocessor macros interactively.

Uppercase operands to IT instructions. The assembler now accepts both uppercase and lowercase
operands for the IT family of instructions.

NEON autovectorizer fix. A compiler bug that caused generation of bad VLD1 instructions has
been fixed. The bug affected code compiled with -mfpu=neon -ftree-vectorize.

Bug fix in simulator reset code. A bug which could cause programs to crash at startup has been
fixed in the CS3 reset code used for simulators. The affected linker scripts are generic.ld,
generic-vfp.ld, generic-m.ld, and hosted versions of the above.

Output files removed on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

62

Sourcery G++ Lite Release Notes

Atmel AT91SAM7S-EK support. Support for Atmel AT91SAM7S-EK boards has been added.

Placing bss-like regions in load regions. The linker no longer issues an incorrect error message
when a bss-like section is placed at specific load region. The linker formerly incorrectly considered
the section as taking up space in the load region.

ARMv7 offset out of range errors. An assembler bug that resulted in offset out of
range errors when compiling for ARMv7 processors has been fixed.

Thumb-2 MUL encoding. In Thumb-2 mode, the assembler now encodes MUL as a 16-bit instruction
(rather than as a 32-bit instruction) when possible. This fix results in smaller code, with no loss of
performance.

ARM C++ ABI utility functions. Vector utility functions required by the ARM C++ ABI no
longer crash when passed null pointers. The affected functions are __aeabi_vec_dtor_cookie,
__aeabi_vec_delete, __aeabi_vec_delete3, and __aeabi_vec_delete3_nodtor.
These functions are not intended for use by application programmers; they are only called by compiler-
generated code. They are not presently used by the GNU C++ compiler, but are used by some other
compilers, including ARM's RealView® compiler.

GCC version 4.3.2. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.3.2. For
more information about changes from GCC version 4.2 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.3/changes.html.

Smaller Thumb-2 code. When optimizing for size (i.e., when -Os is in use), GCC now generates
the 16-bit MULS Thumb-2 multiply instruction instead of the 32-bit MUL instruction.

Thumb-2 RBIT encoding. An assembler bug that resulted in incorrect encoding of the Thumb-
2 RBIT instruction has been fixed.

Additional Stellaris interrupt vectors. The USB0, PWM3, UDMA and UDMAERR interrupt
vectors have been added to the CS3 Luminary Micro Stellaris configurations.

Additional Luminary Micro CPUs. A large number of additional Luminary Micro CPUs are
now supported. Linker scripts for these CPUs include the internal ROM region.

Sprite communication improvements. The Sourcery G++ Debug Sprite now uses a more efficient
protocol for communicating with GDB. This can result in less latency when debugging, especially
when running the Sprite on a remote machine over a network connection.

Marvell Feroceon compiler bug fix. A bug that caused an internal compiler error when optim-
izing for Marvell Feroceon CPUs has been fixed.

Misaligned accesses to packed structures fix. A bug that caused GCC to generate misaligned
accesses to packed structures has been fixed.

SIZE_MIN and SIZE_MAX. SIZE_MAX is now correctly defined in stdint.h to be an unsigned
quantity equal to the maximum possible value of a size_t, as required by the C standard. In addition,
the definition of SIZE_MIN has been removed, as this constant is not prescribed by the C standard.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

63

Sourcery G++ Lite Release Notes

A.1.9. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM EABI, please refer
to the Getting Started guide packaged with those releases.

64

Sourcery G++ Lite Release Notes

Appendix B
Sourcery G++ Lite Licenses
Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary.This appendix
explains what licenses apply to your use of Sourcery G++ Lite.You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

65

B.1. Licenses for Sourcery G++ Lite Compon-
ents
The table below lists the major components of Sourcery G++ Lite for ARM EABI and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0 1GNU Compiler Collection

GNU General Public License 3.0 2GNU Binary Utilities

GNU General Public License 3.0 3GNU Debugger

CodeSourcery LicenseSourcery G++ Debug Sprite for ARM

CodeSourcery LicenseCodeSourcery Common Startup Code Se-
quence

BSD License. For the text of the license and a complete
list of copyright holders, see COPYING.NEWLIB in-
cluded in the source package.

Newlib C Library

GNU General Public License 2.0 4GNU Make

GNU General Public License 2.0 5GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.

Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-arm-none-eabi-examples subdirectory. These examples are not covered
by the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples
are provided by CodeSourcery as is with no warranty of any kind, including implied warranties of
merchantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

1 http://www.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

66

Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

B.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

3. Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

67

Sourcery G++ Lite Licenses

information for each “free software” or “open source” component is available in the relevant
source file.

7. CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

68

Sourcery G++ Lite Licenses

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

69

Sourcery G++ Lite Licenses

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

70

Sourcery G++ Lite Licenses

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for ARM EABI
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Using Flash Memory
	3.4. ARMv7-M Interrupt Handlers
	3.5. ARM Interrupt Vectors
	3.6. Using VFP Floating Point
	3.6.1. Enabling Hardware Floating Point
	3.6.2. NEON SIMD Code
	3.6.3. Half-Precision Floating Point

	3.7. ABI Compatibility
	3.8. Object File Portability
	3.9. ARM Profiling Implementation

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications in the Simulator
	4.4. Running Applications from GDB
	4.4.1. Connecting to the GDB Simulator
	4.4.2. Connecting to the Sourcery G++ Debug Sprite
	4.4.3. Connecting to an External GDB Server
	4.4.4. Loading and Running Applications

	Chapter 5 CS3™: The CodeSourcery Common Startup Code Sequence
	5.1. Startup Sequence
	5.1.1. The Hard Reset Phase
	5.1.2. The Assembly Initialization Phase
	5.1.3. The C Initialization Phase

	5.2. Exit and Embedded Systems
	5.3. Memory Layout
	5.4. Interrupt Vectors and Handlers
	5.5. Linker Scripts
	5.5.1. Program and Data Placement
	5.5.2. Hosting and Semihosting
	5.5.3. Choosing a Linker Script

	5.6. Supported Boards for ARM EABI
	5.7. Interrupt Vector Tables
	5.8. Regions and Memory Sections

	Chapter 6 Sourcery G++ Debug Sprite
	6.1. Probing for Debug Devices
	6.2. Debug Sprite Example
	6.3. Invoking Sourcery G++ Debug Sprite
	6.4. Sourcery G++ Debug Sprite Options
	6.5. Remote Debug Interface Devices
	6.6. Actel FlashPro Devices
	6.6.1. Installing FlashPro Windows drivers

	6.7. Altera Devices
	6.7.1. Setting Up the Altera Device
	6.7.2. Hardware Breakpoints

	6.8. Debugging a Remote Board
	6.9. Supported Board Files
	6.10. Board File Syntax

	Chapter 7 Next Steps with Sourcery G++
	7.1. Sourcery G++ Subscriptions
	7.2. Sourcery G++ Knowledge Base
	7.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for ARM EABI
	A.1.1. Changes in Sourcery G++ Lite 2009q3-68
	A.1.2. Changes in Sourcery G++ Lite 2009q3-64
	A.1.3. Changes in Sourcery G++ Lite 2009q3-37
	A.1.4. Changes in Sourcery G++ Lite 2009q1-161
	A.1.5. Changes in Sourcery G++ Lite 2009q1-116
	A.1.6. Changes in Sourcery G++ Lite 2008q3-66
	A.1.7. Changes in Sourcery G++ Lite 2008q3-39
	A.1.8. Changes in Sourcery G++ Lite 2008q3-12
	A.1.9. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement

