
Symbian ADT Sourcery G++ Lite

ARM SymbianOS

Symbian ADT Sourcery G++ Lite 4.4-172

Getting Started

Symbian ADT Sourcery G++ Lite: ARM SymbianOS: Symbi-
an ADT Sourcery G++ Lite 4.4-172: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Symbian ADT Sourcery G++ Lite,
CodeSourcery's customized, validated, and supported version of the GNU Toolchain. Symbian ADT
Sourcery G++ Lite includes everything you need for application development, including C and C++
compilers, assemblers, linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents
Preface ... iv

1. Intended Audience .. v
2. Organization .. v
3. Typographical Conventions ... vi

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Building Your Program ... 2
1.3. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 3
2.1. Terminology ... 4
2.2. System Requirements ... 4
2.3. Downloading an Installer ... 5
2.4. Installing Symbian ADT Sourcery G++ Lite ... 5
2.5. Installing Symbian ADT Sourcery G++ Lite Updates .. 9
2.6. Setting up the Environment .. 9
2.7. Uninstalling Symbian ADT Sourcery G++ Lite .. 11

3. Symbian ADT Sourcery G++ Lite for ARM SymbianOS .. 12
3.1. Included Components and Features .. 13
3.2. Library Configurations .. 13
3.3. Building SymbianOS Programs .. 14
3.4. SymbianOS Runtime Libraries ... 16
3.5. NEON SIMD Code .. 16
3.6. Half-Precision Floating Point ... 17
3.7. ABI Compatibility .. 17

4. Using Sourcery G++ from the Command Line ... 18
4.1. Building an Application ... 19
4.2. Running Applications on the Target System ... 19
4.3. Running Applications with QEMU Platform Emulator .. 19
4.4. Running Applications from GDB .. 20

5. Sourcery G++ Debug Sprite .. 21
5.1. Probing for Debug Devices .. 22
5.2. Invoking Sourcery G++ Debug Sprite ... 22
5.3. Sourcery G++ Debug Sprite Options .. 23
5.4. SymbianOS TRK Interface .. 23
5.5. Debugging a Remote Board ... 24
5.6. Supported Board Files ... 25
5.7. Board File Syntax .. 25

6. Next Steps with Sourcery G++ .. 29
6.1. Sourcery G++ Knowledge Base .. 30
6.2. Manuals for GNU Toolchain Components ... 30

A. Symbian ADT Sourcery G++ Lite Release Notes ... 31
A.1. Changes in Symbian ADT Sourcery G++ Lite for ARM SymbianOS 32

B. Symbian ADT Sourcery G++ Lite Licenses ... 33
B.1. Licenses for Symbian ADT Sourcery G++ Lite Components 34
B.2. Sourcery G++ Software License Agreement .. 35

iii

Preface
This preface introduces the Symbian ADT Sourcery G++ Lite Getting Started guide. It ex-
plains the structure of this guide and describes the documentation conventions used.

iv

1. Intended Audience
This guide is written for people who will install and/or use Symbian ADT Sourcery G++ Lite. This
guide provides a step-by-step guide to installing Symbian ADT Sourcery G++ Lite and to building
simple applications. Parts of this document assume that you have some familiarity with using the
command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Symbian ADT Sourcery G++ Lite for the
first time. You may use this chapter as an abbreviated guide
to the rest of this manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Symbian ADT Sourcery G++ Lite. This section describes the
available installation options and explains how to set up your
environment so that you can build applications.

Chapter 3, “Symbian ADT Sourcery
G++ Lite for ARM SymbianOS”

This chapter contains information about using Symbian ADT
Sourcery G++ Lite that is specific to ARM SymbianOS targets.
You should read this chapter to learn how to best use Symbian
ADT Sourcery G++ Lite on your target system.

Chapter 4, “Using Sourcery G++
from the Command Line”

This chapter explains how to build applications with Symbian
ADT Sourcery G++ Lite using the command line. In the pro-
cess of reading this chapter, you will build a simple application
that you can use as a model for your own programs.

Chapter 5, “Sourcery G++ Debug
Sprite”

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite is provided for debug-
ging of applications running on a remote Symbian host or
simulator. This chapter includes information about the debug-
ging devices and boards supported by the Sprite for ARM
SymbianOS.

Chapter 6, “Next Steps with Sourcery
G++”

This chapter describes where you can find additional docu-
mentation and information about using Symbian ADT
Sourcery G++ Lite and its components. It also provides in-
formation about Sourcery G++ subscriptions. CodeSourcery
customers with Sourcery G++ subscriptions receive compre-
hensive support for Sourcery G++.

Appendix A, “Symbian ADT
Sourcery G++ Lite Release Notes”

This appendix contains information about changes in this re-
lease of Symbian ADT Sourcery G++ Lite for ARM Symbi-
anOS. You should read through these notes to learn about new
features and bug fixes.

Appendix B, “Symbian ADT
Sourcery G++ Lite Licenses”

This appendix provides information about the software li-
censes that apply to Symbian ADT Sourcery G++ Lite. Read
this appendix to understand your legal rights and obligations
as a user of Symbian ADT Sourcery G++ Lite.

v

Preface

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vi

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Symbian ADT
Sourcery G++ Lite for the first time. You may use this chapter as an abbreviated guide to
the rest of this manual.

1

Symbian ADT Sourcery G++ Lite for ARM SymbianOS is intended for developers working on
embedded SymbianOS applications. It may also be used for SymbianOS kernel development and
debugging, or to build a SymbianOS distribution.

Follow the steps given in this chapter to install Symbian ADT Sourcery G++ Lite and build and run
your first application program. The checklist given here is not a tutorial and does not include detailed
instructions for each step; however, it will help guide you to find the instructions and reference in-
formation you need to accomplish each step. Note that this checklist is also oriented towards applic-
ation debugging rather than kernel debugging.

You can find additional details about the components, libraries, and other features included in this
version of Symbian ADT Sourcery G++ Lite in Chapter 3, “Symbian ADT Sourcery G++ Lite for
ARM SymbianOS”.

1.1. Installation and Set-Up
Install Symbian ADT Sourcery G++ Lite on your host computer. You may download an in-
staller package from the Sourcery G++ web site1, or you may have received an installer on CD. The
installer is an executable program that pops up a window on your computer and leads you through
a series of dialogs to configure your installation. If the installation is successful, it will offer to launch
the Getting Started guide. For more information about installing Symbian ADT Sourcery G++ Lite,
including host system requirements and tips to set up your environment after installation, refer to
Chapter 2, “Installation and Configuration”.

1.2. Building Your Program
Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Symbian ADT Sourcery G++ Lite.

1.3. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

Debug your program in the QEMU platform emulator. The QEMU emulator provides an easy
way to try out your program without requiring target hardware. Refer to Section 4.3, “Running Ap-
plications with QEMU Platform Emulator” for instructions on using QEMU.

Debug your program on the target using the Debug Sprite. You can use the Sourcery G++
Debug Sprite to load and execute your program on the target from the debugger. Refer to Section 4.4,
“Running Applications from GDB” for instructions on using the Sprite from the GDB command
line. Detailed reference material for the Sourcery G++ Debug Sprite, including information about
supported debug devices, can be found in Chapter 5, “Sourcery G++ Debug Sprite”.

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Chapter 2
Installation and Configuration
This chapter explains how to install Symbian ADT Sourcery G++ Lite. You will learn how
to:

1. Verify that you can install Symbian ADT Sourcery G++ Lite on your system.

2. Download the appropriate Symbian ADT Sourcery G++ Lite installer.

3. Install Symbian ADT Sourcery G++ Lite.

4. Configure your environment so that you can use Symbian ADT Sourcery G++ Lite.

3

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-none-symbianelf.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery G++ supports the following host operating systems and architectures:

• Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using IA32,
AMD64, and EM64T processors.

• GNU/Linux systems using IA32, AMD64, or EM64T processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SuSE Enterprise Linux 8 (and later).

• Apple Mac OS X 10.4 (Tiger) and 10.5 (Leopard).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Symbian ADT Sourcery G++ Lite. Consult your
operating system documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the
default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Symbian ADT Sourcery G++ Lite on these systems, you must make /bin/sh
a symbolic link to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Symbian ADT
Sourcery G++ Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Symbian ADT Sourcery G++ Lite, you must have at least 128MB of
available memory.

The amount of disk space required for a complete Symbian ADT Sourcery G++ Lite installation
directory depends on the host operating system and the number of target libraries included. Typically,
you should plan on at least 400MB.

4

Installation and Configuration

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer
prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set. On Mac OS X hosts,
the installer scans all mounted volumes with write permissions for one with sufficient free space to
use for temporary files.

2.2.3.Target System Requirements

See Chapter 3, “Symbian ADT Sourcery G++ Lite for ARM SymbianOS” for requirements that apply
to the target system.

2.3. Downloading an Installer
If you have received Symbian ADT Sourcery G++ Lite on a CD, or other physical media, then you
do not need to download an installer. You may skip ahead to Section 2.4, “Installing Symbian ADT
Sourcery G++ Lite”.

You can download Symbian ADT Sourcery G++ Lite from the Sourcery G++ web site1. This free
version of Sourcery G++, which is made available to the general public, does not include all the
functionality of CodeSourcery's product releases. If you prefer, you may instead purchase or register
for an evaluation of CodeSourcery's product toolchains at the Sourcery G++ Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the .exe extension. For GNU/Linux systems Symbian ADT Sourcery G++ Lite
is provided as an executable installer package with the .bin extension. For Mac OS X systems,
Symbian ADT Sourcery G++ Lite is provided as a Mac OS X installer contained inside a compressed
archive with the .zip extension. You may also install from a compressed archive with the .tar.bz2
extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory. On Mac OS X systems, save the archive file in your home
directory.

2.4. Installing Symbian ADT Sourcery G++ Lite
The method used to install Symbian ADT Sourcery G++ Lite depends on your host system and the
kind of installation package you have downloaded.

2.4.1. Using the Symbian ADT Sourcery G++ Lite Installer on Microsoft
Windows

If you have received Symbian ADT Sourcery G++ Lite on CD, insert the CD in your computer. On
most computers, the installer then starts automatically. If your computer has been configured not to
automatically run CDs, open My Computer, and double click on the CD. If you downloaded
Symbian ADT Sourcery G++ Lite, double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Symbian ADT Sourcery G++ Lite.
The installer is intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

5

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Symbian ADT Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

6

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Symbian ADT Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

7

Installation and Configuration

2.4.2. Using the Symbian ADT Sourcery G++ Lite Installer on GNU/Linux
Hosts

Start the graphical installer by invoking the executable shell script:

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Symbian ADT Sourcery G++ Lite.
For additional details on running the installer, see the discussion and screen shots in the Microsoft
Windows section above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Using the Symbian ADT Sourcery G++ Lite Installer on Mac OS
X

Double-click on the archive file (with .zip extension), and wait for the contents to uncompress.
You can then start the graphical installer by double-clicking on the installer icon which appears in
the same directory as the archive file.

After the installer starts, follow the on-screen dialogs to install Symbian ADT Sourcery G++ Lite.
For additional details on running the installer, see the discussion and screen shots in the Microsoft
Windows section above.

2.4.4. Installing Symbian ADT Sourcery G++ Lite from a Compressed
Archive

You do not need to be a system administrator to install Symbian ADT Sourcery G++ Lite from a
compressed archive. You may install Symbian ADT Sourcery G++ Lite using any user account and
in any directory to which you have write access. This guide assumes that you have decided to install
Symbian ADT Sourcery G++ Lite in the $HOME/CodeSourcery subdirectory of your home dir-
ectory and that the filename of the package you have downloaded is /path/to/
package.tar.bz2. After installation the toolchain will be in $HOME/CodeSourcery/
sourceryg++-4.4.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

8

Installation and Configuration

2.5. Installing Symbian ADT Sourcery G++ Lite
Updates
If you have already installed an earlier version of Symbian ADT Sourcery G++ Lite for ARM
SymbianOS on your system, it is not necessary to uninstall it before using the installer to unpack a
new version in the same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM SymbianOS target all begin with
arm-none-symbianelf. This means that you can install Sourcery G++ for multiple target systems
in the same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Symbian
ADT Sourcery G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Symbian ADT Sourcery G++ Lite 4.4-172.

2.6.1.2. Working with Cygwin

Symbian ADT Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment.
You can use Sourcery G++ directly from the Windows command shell. You can also use Sourcery
G++ from within the Cygwin environment, if you prefer.

9

Installation and Configuration

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Symbian ADT Sourcery G++ Lite automatically translates Cygwin
path names into Windows path names. To set this environment variable, type the following command
in a Cygwin shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Symbian ADT Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion
utility. The value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

2.6.2. Setting up the Environment on GNU/Linux or Mac OS X Hosts

If you installed Symbian ADT Sourcery G++ Lite using the graphical installer then you may skip
this step. The installer does this setup for you.

Before using Symbian ADT Sourcery G++ Lite you should add it to your PATH. The command you
must use varies with the particular command shell that you are using. If you are using the C Shell
(csh or tcsh), use the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Symbian ADT Sourcery G++ Lite in an alternate location, you must replace the directory above with
bin subdirectory of the directory in which you installed Symbian ADT Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-none-symbianelf/man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Symbian ADT Sourcery G++ Lite 4.4-172.

10

Installation and Configuration

2.7. Uninstalling Symbian ADT Sourcery G++
Lite
The method used to uninstall Symbian ADT Sourcery G++ Lite depends on the method you originally
used to install it. If you have modified any files in the installation it is recommended that you back
up these changes. The uninstall procedure may remove the files you have altered.

2.7.1. Using the Symbian ADT Sourcery G++ Lite Uninstaller on Mi-
crosoft Windows

For Windows hosts other than Microsoft Windows Vista, select Start, then Control Panel.
Select Add or Remove Programs. Scroll down and click on Sourcery G++ for ARM
SymbianOS. Select Change/Remove and follow the on-screen dialogs to uninstall Symbian ADT
Sourcery G++ Lite.

On Microsoft Windows Vista hosts, select Start, then Settings and finally Control Panel.
Select the Uninstall a program task. Scroll down and double click on Sourcery G++
for ARM SymbianOS. Follow the on-screen dialogs to uninstall Symbian ADT Sourcery G++
Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Symbian ADT Sourcery G++ Lite installation directory with
the -i console command-line option.

To uninstall third-party drivers bundled with Symbian ADT Sourcery G++ Lite, first disconnect the
associated hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall
a program (Vista) to remove the drivers separately. Depending on the device, you may need to
reboot your computer to complete the driver uninstall.

2.7.2. Using the Symbian ADT Sourcery G++ Lite Uninstaller on
GNU/Linux or Mac OS X

You should use the provided uninstaller to remove a Symbian ADT Sourcery G++ Lite installation
originally created by the executable installer script. The arm-none-symbianelf directory located
in the install directory will be removed entirely by the uninstaller. Please back up any changes you
have made to this directory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Symbian ADT
Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Symbian ADT Sourcery G++ Lite from a .tar.bz2 file, you can uninstall it by
manually deleting the installation directory created in the install procedure.

11

Installation and Configuration

Chapter 3
Symbian ADT Sourcery G++ Lite
for ARM SymbianOS
This chapter contains information about features of Symbian ADT Sourcery G++ Lite that
are specific to ARM SymbianOS targets.You should read this chapter to learn how to best
use Symbian ADT Sourcery G++ Lite on your target system.

12

3.1. Included Components and Features
This section briefly lists the important components and features included in Symbian ADT Sourcery
G++ Lite for ARM SymbianOS, and tells you where you may find further information about these
features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.4.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.19.51GNU Binary Utilities

Debugging support and simulators

Separate manual included.6.8.50GNU Debugger

See Chapter 5, “Sourcery G++ Debug Sprite”.4.4-172Sourcery G++ Debug Sprite for
ARM

See Section 4.3, “Running Applications with
QEMU Platform Emulator”.

0.11.50QEMU Emulator

Target libraries

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

3.2.1. Included Libraries

The following library configurations are available in Symbian ADT Sourcery G++ Lite for ARM
SymbianOS.

ARMv5 - Little-Endian, Soft-Float

defaultCommand-line option(s):

ARMv5 - Little-Endian, VFP

-mfloat-abi=softfpCommand-line option(s):

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.

13

Symbian ADT Sourcery G++ Lite for ARM SymbianOS

The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> arm-none-symbianelf-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Building SymbianOS Programs
Building programs for SymbianOS requires you install additional software and follow the SymbianOS
build procedure.

You must install the Symbian SDK1. For Linux and OSX hosts, you will have to install the SDK on
a Windows machine and then make the file system visible on your Linux or OSX host. Alternatively,
for Linux hosts, the GnuPoc2 project provides patches. Set the environment variable EPOCROOT to
the directory containing the epoc32 directory of your Symbian SDK installation, and also ensure
your PATH variable includes the $EPOCROOT/epoc32/tools directory. The following commands
also make use of epoclib and epocarch variables for convenience. For instance, if you have
installed the SDK at /opt/symbian-sdk, enter the following commands:

> export EPOCROOT=/opt/symbian-sdk/s60
> PATH=$EPOCROOT/epoc32/tools:$PATH
> epocinc=$EPOCROOT/epoc32/include
> epocarch=$EPOCROOT/epoc32/release/armv5

SymbianOS programs do not start at main, but at E32Main. Using an editor (such as notepad
on Microsoft Windows or vi on UNIX-like systems), create a file named main.cc containing the
following console program:

#include <e32base.h>
#include <e32cons.h>

_LIT (KTxtEPOC32EX, "EXAMPLES");
_LIT (KTxtExampleCode, "Symbian OS Example Code");
_LIT (KTxtOK, "ok [press any key]");

LOCAL_D CConsoleBase* console;

LOCAL_C int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

1 http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_Quick_Start
2 http://gnupoc.sourceforge.net/

14

Symbian ADT Sourcery G++ Lite for ARM SymbianOS

http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_Quick_Start
http://gnupoc.sourceforge.net/
http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_Quick_Start
http://gnupoc.sourceforge.net/

LOCAL_C void callExampleL () {
 console = Console::NewL
 (KTxtExampleCode,
 TSize (KConsFullScreen, KConsFullScreen));
 CleanupStack::PushL (console);

 _LIT (KHelloWorldText, "Hello world!\n");
 console->Printf (KHelloWorldText);
 for (int i = 0; i < 10; ++i) {
 int n = factorial (i);
 _LIT (KFactorialText, "factorial(%d) = %d\n");
 console->Printf (KFactorialText, i, n);
 }

 console->Printf (KTxtOK);
 console->Getch ();
 CleanupStack::PopAndDestroy ();
}

GLDEF_C TInt E32Main () {
 __UHEAP_MARK;
 CTrapCleanup *cleanup = CTrapCleanup::New ();
 TRAPD (error, callExampleL ());
 __ASSERT_ALWAYS (!error, User::Panic (KTxtEPOC32EX, error));
 delete cleanup;
 __UHEAP_MARKEND;
 return 0;
}

To compile your program use the following command:

> arm-none-symbianelf-g++ -march=armv5t -mthumb -mapcs -nostdinc \
 -D__MARM__ -D__MARM_ARMV5__ -D__MARM_THUMB__ \
 -D__MARM_INTERWORK__ -D__EABI__ -D__EXE__ \
 -D_DEBUG -D_UNICODE -D__SUPPORT_CPP_EXCEPTIONS__ \
 -D__GCCE__ -D__SYMBIAN32__ -D__EPOC32__ \
 -D__S60_50__ -D__S60_3X__ -D__SERIES60_3X__ \
 -D__PRODUCT_INCLUDE__=\"$epocinc/variant/symbian_os.hrh\" \
 -include $epocinc/gcce/gcce.h \
 -I $epocinc/libc -I $epocinc -I $epocinc/variant \
 -c -g -o main.o main.cc

You may see some warnings. These are from Symbian SDK header files, not Sourcery G++ files.

You can link your application with:

> arm-none-symbianelf-g++ -march=armv5t -mthumb -mapcs -nostdlib \
 -Wl,--target1-abs -Wl,--no-undefined \
 -Wl,-Ttext,0x8000 -Wl,-Tdata,0x400000 \
 -Wl,--default-symver -Wl,-soname,"factorial{000a0000}.exe" \
 -Wl,--entry,_E32Startup -Wl,-u,_E32Startup \
 $epocarch/udeb/eexe.lib \
 -shared -g -o factorial.sym main.o \
 -Wl,"-(" -Wl,$epocarch/udeb/usrt2_2.lib \

15

Symbian ADT Sourcery G++ Lite for ARM SymbianOS

 -Wl,$epocarch/udeb/ecrt0.lib -Wl,"-)" \
 -Wl,$epocarch/lib/estlib.dso \
 -Wl,$epocarch/lib/euser.dso \
 -Wl,$epocarch/lib/dfpaeabi.dso \
 -Wl,$epocarch/lib/dfprvct2_2.dso \
 -Wl,$epocarch/lib/drtaeabi.dso \
 -Wl,$epocarch/lib/scppnwdl.dso \
 -Wl,$epocarch/lib/drtrvct2_2.dso \
 -lsupc++ -lgcc

This produces a factorial.sym file that can be used by arm-none-symbianelf-gdb.

To run the program on SymbianOS, you must convert this file to EPOC32 format using the elf2e32
command. The elf2e32 is part of the Symbian SDK and not part of Sourcery G++. If you are using
a Linux or OSX host, and did not install GnuPoc, you must install Wine3 and invoke elf2e32 as:

> wine $EPOCROOT/epoc32/tools/elf2e32.exe other options

The following command creates factorial.exe:

> elf2e32 --sid=0x00000000 --version=10.0 --uid1=0x1000007a \
 --uid2=0xe8000075 --uid3=0x00000000 --vid=0x70000001 \
 --capability=none --fpu=softvfp --targettype=EXE \
 --output="factorial.exe" --elfinput="factorial.sym" \
 --linkas="factorial{000a0000}.exe" \
 --libpath="$epocarch/lib"

Refer to Section 4.3, “Running Applications with QEMU Platform Emulator” for instructions on
running your program using QEMU. See Section 4.4, “Running Applications from GDB” for details
of using arm-none-symbianelf-gdb to debug your program. Refer to Chapter 5, “Sourcery G++ Debug
Sprite” for information on how to connect arm-none-symbianelf-gdb to your target.

3.4. SymbianOS Runtime Libraries
Symbian ADT Sourcery G++ Lite does not include C or C++ runtime libraries for SymbianOS.
These are provided separately by Symbian.

3.5. NEON SIMD Code
Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -ftree-vectorize is not required.

3 http://www.winehq.org/

16

Symbian ADT Sourcery G++ Lite for ARM SymbianOS

http://www.winehq.org/
http://www.winehq.org/

3.6. Half-Precision Floating Point
Sourcery G++ for ARM SymbianOS includes support for half-precision (16-bit) floating point, in-
cluding the new __fp16 data type in C and C++, support for generating conversion instructions
when compiling for processors that support them, and library functions for use in other cases. The
included QEMU emulator also supports the hardware instructions when invoked with the any CPU
specifier.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3.7. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center4:

• BSABI - ARM IHI 0036B (10 October 2008)

• BPABI - ARM IHI 0037B (10 October 2008)

• EHABI - ARM IHI 0038A (10 October 2008)

• CLIBABI - ARM IHI 0039A (10 October 2008)

• AADWARF - ARM IHI 0040A (10 October 2008)

• CPPABI - ARM IHI 0041B (10 October 2008)

• AAPCS - ARM IHI 0042C (10 October 2008)

• RTABI - ARM IHI 0043B (10 October 2008)

• AAELF - ARM IHI 0044C (10 October 2008)

• ABI Addenda - ARM IHI 0045B (10 October 2008)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

4 http://infocenter.arm.com

17

Symbian ADT Sourcery G++ Lite for ARM SymbianOS

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

Chapter 4
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Symbian ADT Sourcery G++ Lite from the command
line.

18

4.1. Building an Application
This chapter explains how to build an application with Symbian ADT Sourcery G++ Lite using the
command line. As elsewhere in this manual, this section assumes that your target system is arm-
none-symbianelf, as indicated by the arm-none-symbianelf command prefix.

Building programs for SymbianOS requires unique command-line arguments and build steps to in-
tegrate with the Symbian SDK; refer to Chapter 3, “Symbian ADT Sourcery G++ Lite for ARM
SymbianOS” for details.

4.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them. Alternatively, you can use the Sourcery G++ Debug Sprite from within GDB to
download and run programs on the target via a supported hardware debugging device.

4.3. Running Applications with QEMU Platform
Emulator
Symbian ADT Sourcery G++ Lite includes the QEMU emulator. This is a program which runs on
your host computer and allows you to run and debug ARM SymbianOS applications without target
hardware.

The QEMU emulator is invoked as follows:

> arm-none-symbianelf-qemu-system \
 -kernel kernel-image -M device-tree \
 [-serial serial-ports]

The kernel-image file is the SymbianOS kernel image you wish to use. The device-tree
file describes the emulated devices that are to be provided.

The optional serial-ports specifies how virtual serial ports are made available. For example,
a port is required for debugging. The following serial ports are available:

vc Provide a virtual console.

tcp:hostname:portnum[,op-
tions]

Provide a TCP connection listening on hostname:portnum.
You can optionally specify a comma-separated list of op-
tions keywords:

server Listen for incoming requests.

nowait Disable the Nagle wait delay heuristic. This im-
proves the latency of interactive connections at
the expense of bandwidth.

For instance, to start a SymbianOS emulation with the first virtual serial port connected to a virtual
console and the second listening on port 5555 on the local host, use:

> arm-none-symbianelf-qemu-system \
 -kernel syborg_001.TextShell.IMG -M syborg.dtb \
 -serial vc -serial tcp:127.0.0.1:5555,server,nowait

19

Using Sourcery G++ from the Command Line

Refer to Syborg documentation for information on creating the kernel image and device tree.

The version of QEMU included with Symbian ADT Sourcery G++ Lite for ARM SymbianOS is
configured to run in platform emulation mode only, and other QEMU features not documented here
are not supported in Symbian ADT Sourcery G++ Lite. For additional information about QEMU,
visit the QEMU web site1.

4.4. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. GDB can also be used to run and debug programs with QEMU, a simu-
lator that runs on your host system.

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 4.1, “Building
an Application”, enter:

> arm-none-symbianelf-gdb factorial.sym

For SymbianOS you must specify the ELF binary, not the EPOC32 binary that you load onto your
target.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.4.1. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 5, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

(gdb) target remote | arm-none-symbianelf-sprite arguments

Refer to Section 5.2, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

4.4.2. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

1 http://fabrice.bellard.free.fr/qemu

20

Using Sourcery G++ from the Command Line

http://fabrice.bellard.free.fr/qemu
http://fabrice.bellard.free.fr/qemu

Chapter 5
Sourcery G++ Debug Sprite
This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite is provided for debugging of programs running under SymbianOS. This chapter
includes information about the debugging devices and boards supported by the Sprite for
ARM SymbianOS.

21

Symbian ADT Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM SymbianOS.
This Sprite is provided to allow debugging of programs running on a SymbianOS target or simulator.

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 5.2, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Symbian ADT Sourcery G++ Lite.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

5.1. Probing for Debug Devices
Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the -i option:

> arm-none-symbianelf-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
 (Symbian ADT Sourcery G++ Lite 4.4-172)
armusb: [speed=<n:0-7>] ARMUSB device
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 5.2, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

5.2. Invoking Sourcery G++ Debug Sprite
The Debug Sprite is invoked as follows:

> arm-none-symbianelf-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Symbian ADT Sourcery G++ Lite
for ARM SymbianOS:

22

Sourcery G++ Debug Sprite

trk Use SymbianOS TRK interface. Refer to Section 5.4, “SymbianOS TRK Interface”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 5.6, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the -b option to list the available board files. You
can also write a custom board file; see Section 5.7, “Board File Syntax” for more information about
the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

5.3. Sourcery G++ Debug Sprite Options
The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-none-symbianelf-sprite ... command, you
do not need this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

5.4. SymbianOS TRK Interface
The Debug Sprite supports debugging SymbianOS programs via the Target Resident Kernel (TRK)
interface. The device-url is:

trk://host[:port][/target-program]

23

Sourcery G++ Debug Sprite

The host and port indicate the TRK server location. The target-program specifies the location
of the program you wish to debug, on the remote target's file system.

In order to connect the Debug Sprite to the SymbianOS system, you must start the SymbianOS debug
server on your target. Enter the following in your target console:

> trkconsole

For example, if you started a platform simulator with the -serial
tcp:127.0.0.1:5555,server,nowait option (see Section 4.3, “Running Applications with
QEMU Platform Emulator” for how to start the QEMU simulator) you can invoke the Debug Sprite
on the same host with the following command from GDB:

(gdb) target extended-remote | \
 arm-none-symbianelf-sprite trk://127.0.0.1:5555 symbian

Then use the following commands to copy your program to the target, and start it:

(gdb) remote put program.exe "\\sys\\bin\\program.exe"
...
(gdb) set remote exec-file \sys\bin\program.exe
...
(gdb) run

The different quoting in the remote put and the set remote exec-file commands is de-
liberate. Normal SymbianOS kernels can only run programs from the \sys\bin directory.

5.5. Debugging a Remote Board
You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-none-symbianelf-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base1.

1 https://support.codesourcery.com/GNUToolchain/kbentry132

24

Sourcery G++ Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

5.6. Supported Board Files
The Sourcery G++ Debug Sprite for ARM SymbianOS includes support for the following target
boards. Specify the appropriate board-file as an argument when invoking the Sprite from the
command line.

ConfigBoard

symbianSymbian ADT

5.7. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-none-symbianelf/lib/boards dir-
ectory in the installation. Refer to the files in that directory for examples.

The file's DTD is:

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery G++. No other use is permitted.
 -->

<!ELEMENT board
 (properties?, feature?, initialize?, memory-map?)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>

25

Sourcery G++ Debug Sprite

<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vfp property specifies that the CPU of the
target board has VFP registers.

26

Sourcery G++ Debug Sprite

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arm11, and
cortex.

system-clock This property specifies the target clock frequency (in
Hertz) after reset. It is used to configure flash program-
ming algorithms.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

27

Sourcery G++ Debug Sprite

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

28

Sourcery G++ Debug Sprite

Chapter 6
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Symbian ADT Sourcery G++ Lite and its components.

29

6.1. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal1.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

6.2. Manuals for GNU Toolchain Components
Symbian ADT Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain
components, such as the compiler, linker, assembler, and debugger. Most of the manuals include
tutorial material for new users as well as serving as a complete reference for command-line options,
supported extensions, and the like.

When you install Symbian ADT Sourcery G++ Lite, links to both the PDF and HTML versions of
the manuals are created in the shortcuts folder you select. If you elected not to create shortcuts when
installing Symbian ADT Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-symbianelf/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Symbian ADT Sourcery G++ Lite includes a Unix-
style manual page for each toolchain component. You can view these by invoking the man command
with the pathname of the file you want to view. For example, you can first go to the directory con-
taining the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-symbianelf/man/man1

Then you can invoke man as:

> man ./arm-none-symbianelf-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Symbian ADT Sourcery G++
Lite can be invoked with a --help option. This prints a brief description of the arguments and options
to the program and exits without doing further processing.

1 https://support.codesourcery.com/GNUToolchain/

30

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Appendix A
Symbian ADT Sourcery G++ Lite
Release Notes
This appendix contains information about changes in this release of Symbian ADT Sourcery
G++ Lite for ARM SymbianOS. You should read through these notes to learn about new
features and bug fixes.

31

A.1. Changes in Symbian ADT Sourcery G++
Lite for ARM SymbianOS
This section documents Symbian ADT Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Symbian ADT Sourcery G++ Lite 4.4-172

GCC internal compiler error with optimize attribute. A bug has been fixed that caused the
compiler to crash when invoked with the -O0 or -O1 option on code using the optimize attribute
to specify higher optimization levels for individual functions.

A.1.2. Changes in Symbian ADT Sourcery G++ Lite 4.4-171

GCC internal compiler error. A bug has been fixed that caused GCC to crash when compiling
some C++ code using templates at -O2 or -O3.

Linker bug fix for --section-start. A linker bug that caused --section-start to
fail to work as documented if the section is defined in multiple object files has been fixed.

QEMU fails to start. Two bugs have been fixed that resulted in QEMU failing to start on Windows
hosts due to unresolved symbols, and on Mac OS X hosts due to missing keymaps.

A.1.3. Changes in Symbian ADT Sourcery G++ Lite 4.4-164

Linker performance improvement. A bug in the linker that caused applications with many input
files to link slowly has been fixed.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing some data filling directives, such as .fill 0, 0, 0.

Improved support for debugging RealView® programs . GDB has been enhanced to handle
some debug information contained in binaries produced by the ARM RealView® compiler. Formerly,
GDB sometimes crashed on these programs and libraries.

Debugging preprocessed source code. A compiler bug has been fixed that caused debug output
to erroneously contain the name of the intermediate preprocessed file.

A.1.4. Changes in Symbian ADT Sourcery G++ Lite 4.4-129

No significant changes. There are no significant changes for ARM SymbianOS in this release.

A.1.5. Changes in Symbian ADT Sourcery G++ Lite 4.4-106

Thumb-2 internal compiler error fix. A bug that caused an internal compiler error when
building the QT library for Thumb-2 has been fixed.

Thumb-2 multiply fix. A bug that caused an invalid muls instruction to be generated in certain
circumstances has been fixed. This affected code compiled for Thumb-2, and resulted in an error
from the assembler.

A.1.6. Changes in Symbian ADT Sourcery G++ Lite 4.4-102

Initial release. This is the initial release for ARM SymbianOS.

32

Symbian ADT Sourcery G++ Lite Release Notes

Appendix B
Symbian ADT Sourcery G++ Lite
Licenses
Symbian ADT Sourcery G++ Lite contains software provided under a variety of licenses.
Some components are “free” or “open source” software, while other components are propri-
etary. This appendix explains what licenses apply to your use of Symbian ADT Sourcery
G++ Lite.You should read this appendix to understand your legal rights and obligations as
a user of Symbian ADT Sourcery G++ Lite.

33

B.1. Licenses for Symbian ADT Sourcery G++
Lite Components
The table below lists the major components of Symbian ADT Sourcery G++ Lite for ARM SymbianOS
and the license terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Symbian ADT Sourcery G++ Lite.
Symbian ADT Sourcery G++ Lite may contain free or open-source components not included in the
list below; for a definitive list, consult the source package corresponding to this release of Symbian
ADT Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0 1GNU Compiler Collection

GNU General Public License 3.0 2GNU Binary Utilities

GNU General Public License 3.0 3GNU Debugger

CodeSourcery LicenseSourcery G++ Debug Sprite for ARM

GNU General Public License 2.0 4QEMU Emulator

GNU General Public License 2.0 5GNU Make

GNU General Public License 2.0 6GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.

Important

Although some of the licenses that apply to Symbian ADT Sourcery G++ Lite are “free
software” or “open source software” licenses, none of these licenses impose any obligation
on you to reveal the source code of applications you build with Symbian ADT Sourcery
G++ Lite. You can develop proprietary applications and libraries with Symbian ADT
Sourcery G++ Lite.

Symbian ADT Sourcery G++ Lite may include some third party example programs and libraries in
the share/sourceryg++-arm-none-symbianelf-examples subdirectory. These examples
are not covered by the Sourcery G++ Software License Agreement. To the extent permitted by law,
these examples are provided by CodeSourcery as is with no warranty of any kind, including implied
warranties of merchantability or fitness for a particular purpose. Your use of each example is governed
by the license notice (if any) it contains.

1 http://www.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
6 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

34

Symbian ADT Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

B.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

3. Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

35

Symbian ADT Sourcery G++ Lite Licenses

information for each “free software” or “open source” component is available in the relevant
source file.

7. CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

36

Symbian ADT Sourcery G++ Lite Licenses

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

37

Symbian ADT Sourcery G++ Lite Licenses

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

38

Symbian ADT Sourcery G++ Lite Licenses

	Symbian ADT Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Building Your Program
	1.3. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Symbian ADT Sourcery G++ Lite
	2.4.1. Using the Symbian ADT Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Symbian ADT Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Using the Symbian ADT Sourcery G++ Lite Installer on Mac OS X
	2.4.4. Installing Symbian ADT Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Symbian ADT Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux or Mac OS X Hosts

	2.7. Uninstalling Symbian ADT Sourcery G++ Lite
	2.7.1. Using the Symbian ADT Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Symbian ADT Sourcery G++ Lite Uninstaller on GNU/Linux or Mac OS X
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Symbian ADT Sourcery G++ Lite for ARM SymbianOS
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Building SymbianOS Programs
	3.4. SymbianOS Runtime Libraries
	3.5. NEON SIMD Code
	3.6. Half-Precision Floating Point
	3.7. ABI Compatibility

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications with QEMU Platform Emulator
	4.4. Running Applications from GDB
	4.4.1. Connecting to the Sourcery G++ Debug Sprite
	4.4.2. Connecting to an External GDB Server

	Chapter 5 Sourcery G++ Debug Sprite
	5.1. Probing for Debug Devices
	5.2. Invoking Sourcery G++ Debug Sprite
	5.3. Sourcery G++ Debug Sprite Options
	5.4. SymbianOS TRK Interface
	5.5. Debugging a Remote Board
	5.6. Supported Board Files
	5.7. Board File Syntax

	Chapter 6 Next Steps with Sourcery G++
	6.1. Sourcery G++ Knowledge Base
	6.2. Manuals for GNU Toolchain Components

	Appendix A Symbian ADT Sourcery G++ Lite Release Notes
	A.1. Changes in Symbian ADT Sourcery G++ Lite for ARM SymbianOS
	A.1.1. Changes in Symbian ADT Sourcery G++ Lite 4.4-172
	A.1.2. Changes in Symbian ADT Sourcery G++ Lite 4.4-171
	A.1.3. Changes in Symbian ADT Sourcery G++ Lite 4.4-164
	A.1.4. Changes in Symbian ADT Sourcery G++ Lite 4.4-129
	A.1.5. Changes in Symbian ADT Sourcery G++ Lite 4.4-106
	A.1.6. Changes in Symbian ADT Sourcery G++ Lite 4.4-102

	Appendix B Symbian ADT Sourcery G++ Lite Licenses
	B.1. Licenses for Symbian ADT Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement

