
Symbian ADT Sourcery G++ Lite

ARM SymbianOS

Symbian ADT Sourcery G++ Lite 4.4-172

Symbian Virtual Platform Documentation

Symbian ADT Sourcery G++ Lite: ARM SymbianOS: Symbi-
an ADT Sourcery G++ Lite 4.4-172: Symbian Virtual Platform
Documentation
CodeSourcery, Inc.
Copyright © 2008 CodeSourcery, Inc.
All rights reserved.

Abstract

This document describes the Symbian Virtual Platform, including how to configure and customize
the virtual environment, and programming details for the base devices.

Table of Contents
Preface ... iv

1. Intended Audience .. v
2. Organisation .. v
3. Typographical Conventions .. v

1. Configuring the Virtual Platform ... 1
1.1. About Flattened Device Trees ... 2
1.2. Board Configuration Files ... 2
1.3. Structure of Board Configuration Trees .. 2
1.4. Example .. 4

2. GUI Configuration ... 5
2.1. GUI Structure and Components .. 6
2.2. Using the GUI ... 6
2.3. GUI XML File Specification .. 6
2.4. Sample XML File .. 9

3. Base Platform Devices ... 10
3.1. Common Device Characteristics ... 11
3.2. Platform Device ... 11
3.3. Interrupt Controller .. 11
3.4. Serial Port ... 12
3.5. Keyboard Controller ... 13
3.6. Interval Timer .. 14
3.7. Real-Time Clock .. 15
3.8. Pointer Controller ... 16
3.9. Framebuffer .. 17
3.10. Host Filesystem Device ... 20
3.11. Snapshot Device ... 24
3.12. Network Device ... 25
3.13. NAND Flash Device ... 26
3.14. Audio Device ... 28

4. Virtio .. 32
4.1. Introducing Virtio ... 33
4.2. Virtio_ring .. 33
4.3. Virtual Platform Bindings .. 34

5. Device Plugins ... 35
5.1. Introduction .. 36
5.2. Device Classes .. 36
5.3. Device Object Methods ... 37
5.4. Snapshots ... 37
5.5. Timers ... 37
5.6. Keyboard .. 38
5.7. Mouse .. 38
5.8. Interfacing with C code ... 39

iii

Preface
This preface introduces the Symbian Virtual Platform Documentation. It explains the structure
of this guide and lists other sources of information that relate to Symbian ADT Sourcery
G++ Lite

iv

1. Intended Audience
This document is written for developers targeting the Symbian Virtual Platform. It describes how to
customize the configuration of the base virtual platform, and the operation of the devices within that
system. It also describes how to extend the virtual platform by adding emulation of additional devices.

It is assumed that you are already familiar with the process of bringing up a SymbianOS base port.
The tasks required to build a SymbianOS image for the Virtual Platform are not covered.

2. Organisation
This document is organised into the following chapters and appendices:

Chapter 1, “Configuring the Virtual
Platform”

This chapter describes how to configure the Symbian Virtual
Platform.

Chapter 2, “GUI Configuration” This chapter describes how to configure and bind devices to
the GUI.

Chapter 3, “Base Platform Devices” This chapter describes the operation of the virtual devices that
make up the base virtual platform.

Chapter 4, “Virtio” This chapter describes the Virtio framework used by some of
the virtual IO devices.

Chapter 5, “Device Plugins” This chapter describes how to extend the virtual platform by
adding emulation of new devices.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

v

Preface

Chapter 1
Configuring the Virtual Platform
Ths Symbian Virtual Platform is a flexible system model that can be reconfigured to provide
different devices, memory layouts, etc. This chapter describes the configuration files used
to achieve this.

1

1.1. About Flattened Device Trees
A Symbian Virtual Platform board configuration is described using Flattened Device Trees. These
are based on the device trees used by OpenFirmware (IEEE 1275-1994) systems. Flattened Device
Trees were originally designed as a means of communication between a bootloader and a PowerPC
Linux kernel. However despite this they are not PowerPC- or Linux-specific, and hove been adopted
as a means of describing a Symbian Virtual Platform board configuration.

Flattened Device Trees can be represented in two different forms. The source form is an ASCII text
representation suitable for editing by humans. The binary form is a compact machine-readable rep-
resentation used by the Virtual Platform. The Device Tree Compiler utility is provided to convert
between these two forms.

A Flattened Device Tree consists of a set of nodes. Each node represents a device or bus, and has a
set of properties. Typically these properties describe what type of device this node represents, where
interrupts are routed, where memory mapped control registers should be placed, and any other device-
specific properties.

Each node has a unique name. This name consists of two parts separated by an @ symbol. The first
part is the base name, which is typically the same for different instances of similar devices. The
second part is the device address, which is used to distinguish multiple instances of similar devices.
The node name has no effect on the operation of the device; it is just used to locate the device within
the tree.

Each property consists of a name=value pair. The value may be either empty, a null-terminated
ASCII string, raw byte data, or a set of 32-bit cells (values). Cells are generally used to hold addresses,
sizes, references to other devices, or general numeric values. A cell value can be specified as either
a reference to a device node, or a hexadecimal number.

1.2. Board Configuration Files
QEMU uses a board configuration file to create the virtual machine. This configuration file should
be a binary Flattened Device Tree describing the virtual machine.

1.2.1. Invoking QEMU

Board configuration files can be specified with the -M command-line option. For example:

> arm-none-symbianelf-qemu-system -M board.dtb

1.2.2. Compiling Device Trees

The Device Tree Compiler is a utility that converts human-readable Flattened Device Tree source
files into machine-readable binary representation. The following command converts a source file
(board.dts) to a binary file (board.dtb).

> arm-none-symbianelf-dtc board.dts -O dtb -o board.dtb

1.3. Structure of Board Configuration Trees
A typical board contains three sets of device nodes: CPU, Memory and Peripherals.

2

Configuring the Virtual Platform

1.3.1. CPU Device Nodes

The CPU device node should be located in the /cpus branch of the device tree. The /cpus node
should have #address-cells=1 and #size-cells=0. The name of the node is used to de-
termine the type of the CPU. Valid properties are:

device-type Must be set to "cpu".

cp15,ctr (optional) The value of the CP15 Cache Type Register.

cp15,clid (optional) The value of the CP15 Cache Level ID Register.

cp15,ccsidN (optional) The value of the CP15 Cache Size ID Register for data/unified cache
level N.

cp15,ccsidNi (optional) The value of the CP15 Cache Size ID Register for instruction cache
level N.

1.3.2. Memory Device Nodes

Memory device nodes describe areas of RAM. They should be located in the root of the device tree.
The root of the device tree should have #address-cells=1 and #size-cells=1. Multiple
memory regions may be added as separate nodes or combined into a single node. Valid properties
are:

device-type Must be set to "memory".

reg Each pair of cells specifies an {address, length} of a memory region.

1.3.3. Peripheral Device Nodes

This includes all other devices in the system, including interrupt controllers. They should be located
in a branch of the device tree with #address-cells=1 and #size-cells=0.

Devices are typically identified by the compatible property, and have a set of memory-mapped
registers located by the reg property. For individual device details see Chapter 3, “Base Platform
Devices”.

1.3.4. Interrupts

Interrupt routing is determined by the interrupt, interrupt-parent and
qemu,interrupts properties.

In most cases interrupt routing is specified using a subset of the OpenFirmware interrupt trees. The
interrupt-parent property specifies the parent interrupt device, and the interrupts property
specifies how device interrupts map onto parent interrupts.

The current implementation requires that interrupt parents have #interrupt-cells=1. The
interrupt-map property is not implemented.

In some cases (typically routing from the top-level interrupt controller to the CPU), an OpenFirmware
interrupt tree does not include this link. The qemu,interrupts property is used to describe this
to QEMU. This property consists of a pair of cells for each device interrupts. Each pair is a parent
device reference and interrupt number.

3

Configuring the Virtual Platform

1.4. Example
Below is an example of a simple board description file. It constitutes a Cortex-A8 cpu, ram, interrupt
controller and a serial port.

/ {
 #address-cells = <1>;
 #size-cells = <1>;

 cpus {
 #address-cells = <1>;
 #size-cells = <0>;
 cpu0: ARM,Cortex-A8@0 {
 device_type = "cpu";
 reg = <0>;
 };
 };
 memory@0 {
 device_type = "memory";
 /* 128Mb ram at address zero. */
 reg = <0 08000000>;
 };
 syborg {
 #address-cells = <1>;
 #size-cells = <0>;
 /* Interrupt controller at address 0xc0000000. */
 intc: intc@0 {
 compatible = "syborg,interrupt";
 #interrupt-cells = <1>;
 reg = <c0000000>;
 interrupt-controller;
 qemu,interrupts = <&cpu0 0>;
 num-interrupts = <20>;
 };
 /* Serial port at address 0xc0006000. */
 serial@0 {
 device_type = "serial";
 compatible = "syborg,serial";
 chardev = "serial0";
 reg = <c0006000>;
 interrupts = <5>;
 interrupt-parent = <&intc>;
 };
 };
};

4

Configuring the Virtual Platform

Chapter 2
GUI Configuration
The Symbian Virtual Platform includes a configurable GUI. The GUI provides means to set
skins and combine graphic displays, text displays, pointer devices, and graphic widgets in
virtual terminals, without needing to recompile the system. This chapter documents the
structure of the GUI and its configuration.

5

2.1. GUI Structure and Components
The GUI configuration is specified in an XML file. The structure of the XML file is the following:

• buttons
• display areas
• pointer areas

The GUI is specified as a collection of Virtual Terminals.

Both frame buffer and pointer devices are referenced by their FDT device name, which is specified
in the devid attribute.

2.2. Using the GUI
The GUI is enabled with the -gui command-line option of QEMU, followed by the XML file name.
For example:

./arm-none-symbianelf-qemu-system -kernel ./a.out -M syborg.dtb \
-gui syborg.xml

When the GUI loads, relative image pathnames in the XML file are looked up relative to the directory
in which QEMU is launched, unless they include a path in the file name (either the background
element or the pressedimg element for Virtual Terminals and buttons respectively).

Currently, only the PNG image file format is accepted.

During the GUI operation, the following key combinations are available:

• Ctrl+Alt+1..9: switches between VTs

• Ctrl+Alt+F: toggles fullscreen

• Ctrl+Alt: exits grabbing mode when active

2.3. GUI XML File Specification
The top-level element in the GUI XML file is a <gui> element.

2.3.1. Virtual Terminals

Virtual Terminals are backgrounds onto which buttons, display areas and frame buffers can be placed.

The virtual terminals are specified by the <vt> .. </vt> block.

Inside the vt element, buttons, display areas and pointer areas are specified by <button>,
<displayarea>, and <pointerarea> elements respectively. The display and pointer areas
can overlap.

Table 2.1. vt Element Attributes

MandatoryDescriptionAttribute

yesFile name of the background image.background

6

GUI Configuration

MandatoryDescriptionAttribute

Width of the background. Image cropped if a smaller number than the
actual image width is specified.

width

Height of the background. Image cropped if a smaller number than the
actual image height is specified.

height

2.3.2. Buttons

Buttons are rectangular regions of the background that can be clicked with a mouse of the host system.

Each button has an associated action which is triggered both when the button is left-button clicked
and when it is released. Currently, the only action available is "sendkey", which sends a scan
code to the registered keyboard device when the button is pressed, and sends the scan code with the
proper bits set when released.

Each button is specified by the <button .. /> empty element (this means that there is no </
button> closing tag).

Buttons can be associated with an image, which is displayed when the button is pressed. This image
is located in the same region where the button can be clicked, or in a different location through the
pressed_x, pressed_y, pressed_width, pressed_height attributes (where pressed_
width and pressed_height default to the pressed image width and size respectively).

The button element has the following attributes:

Table 2.2. button Element Attributes

MandatoryDescriptionAttribute

yesLeft coordinate of the clickable area.x

yesTop coordinate of the clickable area.y

Width of the clickable area.width

Height of the clickable area.height

File name of the image to display when the button is pressed.pressedimg

yesAction to perform when the button is pressed. Only "sendkey" is
currently supported.

action

yesParameter for the specified action. Only an integer value representing
the key scancode is supported. All parameters shall be enclosed in ""
double quotes.

parameter

Left coordinate of the pressed button image. Defaults to the left co-
ordinate of the clickable area.

pressed_x

Top coordinate of the pressed button image. Defaults to the top co-
ordinate of the clickable area.

pressed_y

Width of the pressed button image. Defaults to the pressed image
width.

pressed_width

Height of the pressed button image. Defaults to the pressed image
height.

pressed_height

7

GUI Configuration

2.3.3. Display Areas

A display area is the region of the VT where a frame buffer device is rendered. There can exist many
display areas in the same VT.

Each display area is specified by a <displayarea .. /> empty element (this means that there
is no </displayarea> closing tag).

Display areas belonging to a skinned VT cannot be resized or rotated (just flipped vertically or hori-
zontally).

Each display area is associated with a device instance of the FDT through the device name (devid
attribute).

A display area element has the following attributes:

Table 2.3. displayarea Element Attributes

MandatoryDescriptionAttribute

yesLeft coordinate of the display area.x

yesTop coordinate of the display area.y

Width of the display area.width

Height of the display area.height

yesFDT name of the frame buffer device instance.devid

2.3.4. Pointer Areas

A pointer area is the region of the VT that forwards its pointer events to a pointer device. A pointer
area may grab mouse events. There can exist many pointer areas in the same VT.

Each pointer areas is specified by a <pointerarea .. /> empty element (this means that there
is no </pointerarea> closing tag).

Each pointer area is associated with a pointer device instance of the FDT through the device name
(devid attribute).

A pointer area element has the following attributes:

Table 2.4. pointerarea Element Attributes

MandatoryDescriptionAttribute

yesLeft coordinate of the pointer area.x

yesTop coordinate of the pointer area.y

Width of the pointer area.width

Height of the pointer area.height

yesFDT name of the pointer device instance.devid

Specifies whether the GUI starts grabbing all mouse events when the first
left-button click event occurs, or each event is forwarded to the pointer
device without grabbing. 0 = No, 1 = Yes.

grabonclick

8

GUI Configuration

2.4. Sample XML File
The following example demonstrates a configuration for a GUI having two virtual terminals, the
first with a button, a display area, and a a pointer area, and the second with just a display area.

<gui>
 <vt background="syborg.png" width="600" height="480">
 <button x="20" y="206" width="26" height="14" action="sendkey"
 parameter="1" pressedimg="pressed_button.png
 pressedimg_x="21" pressedimg_y="207"/>
 <displayarea devid="framebuffer@0" x="22" y="40"
 width="100" height="105"/>
 <pointerarea devid="touchscreen@0" x="22" y="40"
 width="100" height="105" grabonclick="0"/>
 </vt>
 <vt background="syborg_back.png" width="600" height="480">
 <displayarea devid="0" x="20" y="20" width="70" height="70"/>
 </vt>
</gui>

9

GUI Configuration

Chapter 3
Base Platform Devices
The Symbian Virtual Platform includes a base set of virtual devices. These devices are
designed to provide essential functionality, while remaining simple to program, and avoiding
many of the problems encountered when using real devices. This chapter documents the
functionality and programming interfaces for these devices.

10

3.1. Common Device Characteristics
Unless otherwise specified, each device responds to a single 4-Kbyte region of address space, which
consists of several control registers. Each register is 4 bytes wide, and should be accessed with an
aligned 32-bit access. Registers may be read-only, write-only or read-write. All other accesses to
these device regions must be avoided.

The reg property consists of a single cell that specifies the base address of this region. The address
must be on a 4-Kbyte boundary.

The compatible attribute is used to identify the type of device. The name of the device is ignored,
though it should be unique.

3.2. Platform Device
3.2.1. Description

This device provides platform configuration data. It allows dynamic enumeration and configuration
of other devices.

Configuration data is presented as a binary Flattened Device Tree (FDT) data structure.

This device occupies a 16-Mbyte window of address space. The first 4 Kbytes of this address space
are control registers, as with other devices. The remainder of this region may be accessed as normal
RAM.

3.2.2. Device Properties

compatible syborg,platform

3.2.3. Registers

Table 3.1. Platform Device Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d1000R0x000

The address of the FDT header. This is an offset from
the platform device base address.

TREE_STARTimpl defR0x004

3.3. Interrupt Controller
3.3.1. Description

This device is a simple interrupt controller. It has multiple input IRQs and a single output IRQ. Each
input IRQ can be enabled and disabled independently. In addition all inputs can be disabled in a
single operation.

All inputs are level-triggered. An input is active if it is enabled and raised.

The output IRQ is asserted iff there are any active IRQs.

11

Base Platform Devices

3.3.2. Device Properties

compatible syborg,interrupt

num-interrupts Number of interrupt sources (optional, default 64).

3.3.3. Registers

Table 3.2. Interrupt Controller Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d0000R0x000

Number of active interrupts.STATUS0x00000000R0x004

Current active interrupt. Lower numbers are higher
priority. 0xffffffff if no interrupts are active.

CURRENT0xffffffffR0x008

Writing any value disables all inputs.DISABLE_ALLN/AW0x00c

Disable a single interrupt.DISABLEN/AW0x010

Enable a single interrupt.ENABLEN/AW0x014

The total number of inputs (active or inactive).TOTALimpl defR0x018

3.4. Serial Port
3.4.1. Description

This device implements a DMA-capable serial port. Bytes written to the DATA register are sent
immediately. Received bytes are stored in a FIFO. A maskable interrupt is raised when the data FIFO
is not empty.

DMA operates independently for transmit and receive, with a simple address/count pair for each. A
DMA transfer is initiated by writing the address register, then the count register. The transfer starts
automatically when a nonzero value is written to the count register. As the transfer progresses the
address register is incremented and the count register decremented. The transfer stops when the count
reaches zero. A maskable interrupt is raised when the count register is zero.

A receive DMA transfer first reads any bytes present in the FIFO, then additional incoming bytes.

The count register may be read at any time to monitor progress. To stop a transfer early, write zero
to the count register, then read the address register to determine how many bytes were transferred.

Note

The current implementation completes DMA transmits immediately. However future imple-
mentations may transfer asynchronously. Drivers should check whether the previous
transmit has completed before starting another one.

3.4.2. Device Properties

compatible syborg,serial

chardev Name of associated character device (e.g. "serial0").

fifo-size Size in bytes of the receive FIFO (optional, default 16).

12

Base Platform Devices

3.4.3. Registers

Table 3.3. Serial Controller Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d1001R0x000

Write sends a byte of data. The high 24 bits
should be zero.

DATA0xffffffffRW0x004

Read removes the next byte from the FIFO and
zero extends. If the FIFO is empty then 0xffffffff
is read.

The number of bytes currently in the FIFO.FIFO_COUNT0x00000000R0x008

Bit flags to determine which interrupts are en-
abled. A zero bit masks the interrupt. A nonzero
bit enables the interrupt.

INT_ENABLE0x00000000RW0x00c

Bit0 FIFO not empty.

Bit1 TX DMA count zero.

Bit2 RX DMA count zero.

Transmit DMA address.DMA_TX_ADDR0x00000000RW0x010

Transmit DMA counter.DMA_TX_COUNT0x00000000RW0x014

Receive DMA address.DMA_RX_ADDR0x00000000RW0x018

Receive DMA counter.DMA_RX_COUNT0x00000000RW0x01c

The size of the FIFO.FIFO_SIZEimpl defR0x020

3.5. Keyboard Controller
3.5.1. Description

This device receives keyboard button press/release events. One event is generated for each press or
release action. The low 8 bits of the value is the PC scan code identifying the key. The most significant
bit (bit 31) is zero for key-down events, and set for key-up events.

A maskable interrupt is raised when the event FIFO is not empty.

3.5.2. Device Properties

compatible syborg,keyboard

fifo-size The maximum number of events the FIFO can hold (optional, default 16).

13

Base Platform Devices

3.5.3. Registers

Table 3.4. Keyboard Controller Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d1002R0x000

Reads and removes the next event from the FIFO, or
0xffffffff if the FIFO is empty.

DATA0xffffffffR0x004

The number of events currently in the FIFO.FIFO_COUNT0x00000000R0x008

INT_ENABLE0x00000000RW0x00c 0 Interrupt masked.

1 Interrupt enabled.

The size of the FIFO.FIFO_SIZEimpl defR0x010

3.6. Interval Timer
3.6.1. Description

This device is a single countdown timer. When the timer reaches zero, an interrupt is raised. This
interrupt is sticky (remains set until manually cleared), and can be masked.

In periodic mode the counter is then reloaded with the LIMIT value, and continues counting.

In one-shot mode the timer stops, and the count value must be reset before the timer is re-enabled.

3.6.2. Device Properties

compatible syborg,timer

frequency Counter frequency in Hz.

3.6.3. Registers

Table 3.5. Interval Timer Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d1003R0x000

RUNNING0x00000000RW0x004 0 Timer stopped.

1 Timer running.

ONESHOT0x00000000RW0x008 0 Periodic. Timer count is reloaded from LIMIT
when it reaches zero.

1 One-shot. Timer stops when it reaches zero.

Set the reload value. Also sets the current timer value.LIMIT0x00000000RW0x00c

Current timer countdown value.VALUE0x00000000RW0x010

INT_ENABLE0x00000000RW0x014 0 Interrupt masked.

14

Base Platform Devices

DescriptionNameResetAccessOffset

1 Interrupt enabled.

Write 0x00000001 to this register to clear the inter-
rupt. Read gives the interrupt state before masking (0
= clear, 1 = set).

INT_STATUS0x00000000RW0x018

Timer frequency in Hz.FREQimpl defR0x01c

3.7. Real-Time Clock
3.7.1. Description

This device is a free-running reference clock.

The clock counts the number of nanoseconds (10-9s) since the UNIX Epoch (00:00:00 UTC, January
1, 1970).

For convenience the counter can also be read in seconds, microseconds, and milliseconds.

Because the counter value is 64-bit, accesses are explicitly latched. Issuing a read latch command
(0-3) copies the current counter value to the data register. A write latch command (4) sets the counter
to the value in the data register.

3.7.2. Device Properties

compatible syborg,rtc

3.7.3. Registers

Table 3.6. Real-Time Clock Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d1004R0x000

Timer latch control.LATCHN/AW0x004

0 Read counter (nanoseconds).

1 Read counter (microseconds).

2 Read counter (milliseconds).

3 Read counter (seconds).

4 Write counter.

The low (least significant) 32 bits of the data register.DATA_LOW0x00000000RW0x008

The high (most significant) 32 bits of the data register.DATA_HIGH0x00000000RW0x00c

15

Base Platform Devices

3.8. Pointer Controller
3.8.1. Description

This device receives events from a pointing device (mouse or touchscreen). Each event includes
several button states, a Z distance (typically a scroll wheel) and XY coordinates. For mice the XY
coordinates are a relative distance, while for a touchscreen they are absolute coordinates. Pending
events are stored in a FIFO.

A maskable interrupt is raised when the event FIFO is not empty.

3.8.2. Device Properties

compatible syborg,pointer

absolute 0 = mouse, 1 = touchscreen. (optional, default 1).

fifo-size The maximum number of events the FIFO can hold (optional, default 16).

3.8.3. Registers

Table 3.7. Pointer Controller Registers

DescriptionNameResetAccessOffset

Peripheral ID. 0xc51d0005 for mouse, 0xc51d0006
for touchscreen.

IDimpl defR0x000

Write 1 to this register to load the next FIFO entry.
Has no effect if the FIFO is empty.

LATCHN/AW0x004

The number of events currently in the FIFO.FIFO_COUNT0x00000000R0x008

Current X coordinate. For mice this is a signed delta
from the previous position. For touchscreens it is an

X0x00000000R0x00c

absolute value between 0 and 0x7fff. The positive X
axis is to the right.

Current Y coordinate. For mice this is a signed delta
from the previous position. For touchscreens it is an

Y0x00000000R0x010

absolute value between 0 and 0x7fff. The positive Y
axis is downwards.

Current Z coordinate. This is a signed delta from the
previous value. The positive Z axis is downwards.

Z0x00000000R0x014

Each bit indicates the state of a button. Buttons are
numbered from the least significant bit. A nonzero
bit indicates that the button is pressed.

BUTTONS0x00000000R0x018

INT_ENABLE0x00000000R0x01c 0 Interrupt masked.

1 Interrupt enabled.

The size of the FIFO.FIFO_SIZEimpl defR0x020

16

Base Platform Devices

3.9. Framebuffer
3.9.1. Description

This device is a framebuffer that has the following capabilities:

• Different bpp depths (1, 2, 4, 8, 15, 16, 24, 32)

• Color palette for bpp depths 1, 2, 4, 8

• LE/BE byte ordering

• LE/BE pixel ordering

• RGB/BGR color ordering (for 16 and 32 bpp modes)

• Resizeable screen

• Fast blank screen mode

• Interrupt raising

• Variable orientation: 90-degree stepped rotation, plus flipping

• Non-consecutive row arrangement

3.9.2. Configuring the Framebuffer device

Configuration can be performed with the device in disabled state (FB_ENABLED = 0) to avoid un-
expected behavior from a half-configured device.

Sample configuration sequence:

1. Disable the device (FB_ENABLED = 0)

2. Specify the base address memory where the data will be read (FB_BASE = addr)

3. Specify the interrupts mask (FB_INT_MASK)

4. Specify the rest of the configuration settings (i.e. height, width, orientation, palette)

5. Enable the device (FB_ENABLED = 1)

FB_BASE update (for page flipping) and palette changes can safely be performed without disabling
the device.

3.9.3. Pixel Formats

The framebuffer interprets framebuffer data by loading 32-bit words of data from RAM, splitting
each word into pixels, then interpreting each pixel as either an index into the palette or a set of 3
color components. The exception is 24-bit mode where each pixel is fetched as 3 bytes. See individual
registers for full details.

3.9.4. Device Properties

compatible syborg,framebuffer

17

Base Platform Devices

width Default width in pixels (optional)

height Default height in pixels (optional)

3.9.5. Registers

Table 3.8. Framebuffer Registers

DescriptionNameResetA c -
cess

Offset

Peripheral ID.ID0xc51d1007R0x000

Base memory address where the data will be read.
The address must be aligned to a 4-byte boundary.

BASE0x00000000RW0x004

Screen height (in pixels).HEIGHTimpl defRW0x008

Screen width (in pixels). The length of the resulting
row data must be a multiple of 4 bytes. e.g. for 16
bpp mode this must be a multiple of 2.

WIDTHimpl defRW0x00c

Set display orientation.O R I E N TA -
TION

0x00000000RW0x010

0 No rotation.

1 90 degree counterclockwise rotation.

2 180 degree rotation.

3 90 degree clockwise rotation.

4 Vertical flip.

5 90 degree counterclockwise rotation followed by
vertical flip.

6 Horizontal flip.

7 90 degree clockwise rotation followed by vertical
flip.

Note

This has no direct affect on the operation of
the framebuffer. It is simply a hint how the
resulting image should be displayed.

Blank screen mode. Causes the device to display a
black screen, ignoring the contents of the framebuffer

BLANK0x00000000RW0x014

data. The device does not trigger the VSYNC inter-
rupt during the Blank screen mode.

0 Normal operation.

1 Blank screen.

18

Base Platform Devices

DescriptionNameResetA c -
cess

Offset

Integer bit mask controlling which interrupts are
active. It is an OR'ed combination of the following
bits:

INT_MASK0x00000000RW0x018

0x01 Enables the VSYNC interrupt. This interrupt
triggers immediately after a screen refresh.

0x02 Enables the BASE_UPDATE_DONE inter-
rupt. Raised at the same time as VSYNC,
but only if the FB_BASE register has been
modified since the last refresh.

Note

Screen refreshes may occur at unpredictable
intervals, so the VSYNC interrupt should
not be used to control timing.

This register is an integer bit mask, where each bit
represents the asserted interrupt. Read and write this

INT_CAUSE0x00000000RW0x01c

register in the interrupt handling routine. Each bit set
will clear the corresponding interrupt.

Refer to the FB_INT_MASK register for the possible
bit values and the description of each interrupt.

Bits per pixel. Valid values are as follows:BPP0x00000020RW0x020

1 2-color palette.

2 4-color palette.

4 16-color palette.

8 256-color palette.

15 High bit ignored. 5 bits each for red, green and
blue.

16 5 bits red, 6 bits green, 5 bits blue.

24 8 bits each for red, green and blue.

32 8 high bits ignored. 8 bits each for red, green
and blue.

Order of the red, green, and blue components.COLOR_OR-
DER

0x00000000RW0x024

0 BGR (blue is LSB, red is MSB).

1 RGB (red is LSB, blue is MSB)

Endianness of the framebuffer source data. Data is
fetched in 32-bit words, and the whole word is byte

B Y T E _ O R -
DER

0x00000000RW0x028

19

Base Platform Devices

DescriptionNameResetA c -
cess

Offset

swapped according to this register, independent of
the pixel size. This is ignored for 24 bpp mode.

0 Little-endian

1 Big-endian

Controls how multiple pixels are packed into a byte.
This only affects 1, 2 and 4 bpp modes. The least

PIXEL_OR-
DER

0x00000000RW0x02c

significant byte of the word always contains the first
8/4/2 pixels.

0 Little-endian (first pixel is LSB).

1 Big-endian (first pixel is MSB).

Number of bytes between the start of consecutive
rows. If set to zero then this register is ignored and

ROW_PITCH0x00000000RW0x030

the pitch is the length of the row. Must be a multiple
of 4.

Enables or disables the framebuffer device, allowing
configuration changes during the disabled mode to

ENABLED0x00000000RW0x034

avoid unexpected behavior from a half configured
device.

0 Device is disabled.

1 Device is enabled.

Palette values to use in 1, 2, 4, and 8 bpp modes.
There is one 32-bit word per entry. The color encod-
ing is:

PALETTE0x00000000RW0x400-
0x7fc

Bits 31-24 Unused.

Bits 23-16 Red.

Bits 15-8 Green.

Bits 7-0 Blue.

3.10. Host Filesystem Device
3.10.1. Description

This device provides access to the host filesystem.

Access is implemented via a virtual syscall interface. Syscall arguments are loaded into the corres-
ponding device argument registers. The Syscall is triggered by writing the syscall number to the
COMMAND register. The syscall completes and the results are ready immediately. The RESULT register

20

Base Platform Devices

is zero if the syscall succeeded and a negative error value if the syscall failed. Other values may be
returned in the device argument registers.

Filenames are specified using a pair of argument values. The first value is a memory address locating
the start of the string, and the second is a length. Filenames are encoded using 16-bit Unicode char-
acters (a.k.a. UTF-16 or UCS-2). The filename length is the number of 16-bit characters. The filename
need not be null terminated.

All filenames should include absolute paths including the drive specifier. (e.g. N:\TESTS\
LOG.TXT). The device has no concept of a current working directory, and relative paths are not
supported. A backslash (\) is used as a directory separator.

The supplied filename is mapped onto the host system by removing the drive specifier and prepending
a host directory.

Warning

This device does not provide a secure sandbox environment. It may be possible to access
files outside the specified host directory.

Warning

Care should be taken to avoid modifying a file or directory on the host while it is in use by
the virtual machine. No facilities are provided for synchronisation or locking between dif-
ferent machines.

3.10.2. Syscalls

The following syscalls are available:

MkDir (1) Create a new directory. ARG0/ARG1 is the name of the new direct-
ory.

RmDir (2) Remove a directory. ARG0/ARG1 is the name of the directory to
be removed. The directory must be empty.

Delete (3) Remove a file. ARG0/ARG1 is the name of the file to be removed.

Rename (4) Rename a file. ARG0/ARG1 is the name of an existing file, and
ARG2/ARG3 is the new name for the file.

Replace (5) Move a file, replacing another if necessary. ARG0/ARG1 is the
name of an existing file, and ARG2/ARG3 is the new name for the
file.

Get Entry (7) Query attributes of a file. ARG0/ARG1 is the name of the file to
query. Upon successful completion the following values are set:

File attributes. A combination of the following bit flags:ARG0

0x01 Readonly

0x02 Hidden

0x10 Directory

21

Base Platform Devices

File last modification time. This is the number of seconds
from the UNIX Epoch (00:00:00 UTC, January 1, 1970).

ARG1

File size in bytes.ARG2

Open File (9) Open a file. ARG0/ARG1 is the name of the file to open. Upon
successful completion the following values are set:

The newly opened file handle.ARG0

File attributes. A combination of the following bit flags:ARG1

0x01 Readonly

0x02 Hidden

0x10 Directory

File last modification time. This is the number of seconds
from the UNIX Epoch (00:00:00 UTC, January 1, 1970).

ARG2

File size in bytes.ARG3

Open Directory (10) Open a directory listing. ARG0/ARG1 is the filename pattern to
match. The last filenename component may include * and ? wild-
cards. If the pattern ends in \ then it is equivalent to *. ARG0 is
set to the newly opened directory handle.

Close File (11) Close a file handle. ARG0 is the file handle to close.

Read From File (12) Read data from a file. ARG0 is the file handle to read from. ARG1
is the offset from the start of the file. ARG2 is the memory address
to write the read data to. ARG3 is the number of bytes to read. Upon
successful completion ARG0 is set to the number of bytes read. This
may be less than the requested size if the end of the file is reached.

Write To File (13) Write data to a file. ARG0 is the file handle to write to. ARG1 is the
offset form the start of the file. ARG2 is the memory address to read
the read data from. ARG3 is the number of bytes to write. Upon
successful completion ARG0 is set to the number of bytes written.

Set File Size (14) Truncate a file. ARG0 is the file handle to be truncated. ARG1 is the
new length of the file, in bytes.

Flush (15) Flush any buffered file data to underlying storage. ARG0 is the file
handle to flush.

Close Directory (16) Close a directory handle. ARG0 is the directory handle.

Read Directory (17) Read a directory entry. To obtain a complete list of files this this
should be called repeatedly until an EOF error is encountered. ARG0
is the directory handle to read from. ARG1 is the memory address
of the buffer to receive the name. ARG2 is the size (in 16-bit charac-
ters) of the buffer pointed to by ARG1. Upon successful completion
the name of the directory entry is written into the buffer, and the
following values are set:

22

Base Platform Devices

File attributes. A combination of the following bit flags:ARG0

0x01 Readonly

0x02 Hidden

0x10 Directory

File last modification time. This is the number of seconds
from the UNIX Epoch (00:00:00 UTC, January 1, 1970).

ARG1

File size in bytes.ARG2

The length of the name (in 16-bit characters).ARG3

3.10.3. Errors

The following result codes may be returned:

ValueError

0None (Success)

-1NotFound

-2General

-4NoMemory

-5NotSupported

-6InvalidArgument

-8BadHandle

-11AlreadyExists

-12PathNotFound

-14InUse

-19Unknown

-20Corrupt

-21AccessDenied

-22Locked

-23Write

-25Eof

-26DiskFull

-28BadName

-39Abort

-40TooBig

-43DirFull

-46PermissionDenied

3.10.4. Device Properties

compatible syborg,hostfs

23

Base Platform Devices

host-path The host path that specifies the root directory for this device.

drive-number The number to identify this device. Typically drive number 1 is A:, drive
number 2 is B:, etc.

3.10.5. Registers

Table 3.9. Host Filesystem Device Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d0008R0x000

Writing a value to this address causes the specified
command to be executed.

COMMAND0x00000000RW0x004

The result of the last command. A value of zero indic-
ates success, a negative error code indicates failure.

RESULT0x00000000RW0x008

The first argument register.ARG00x00000000RW0x00c

The second argument register.ARG10x00000000RW0x010

The third argument register.ARG20x00000000RW0x014

The fourth argument register.ARG30x00000000RW0x018

3.11. Snapshot Device
3.11.1. Description

This device allows snapshots of the virtual machine to be created and restored. The name of the
snapshot is an ASCII string read from RAM. The name need not be null terminated.

Note

The snapshot might not take effect immediately. It can occur any time between the TRIGGER
store and the next branch instruction.

Normally QEMU stores machine snapshots in a QCOW2 image file, along with a snapshot of the
image. If the snapshot name starts with file: then the rest of the name is interpreted as a filename,
and the snapshot is read from/written to that file.

Snapshots can also be loaded with the -loadvm name commandline option or the loadvm mon-
itor command.

Warning

The host filesystem device allows a machine to interact with files not under the control of
QEMU. The state of these files is not included in the snapshot, and any open handles will
be closed when the snapshot is restored.

3.11.2. Device Properties

compatible syborg,snapshot

24

Base Platform Devices

3.11.3. Registers

Table 3.10. Snapshot Device Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d0009R0x000

The memory address of the snapshot name.ADDRESS0x00000000RW0x004

The length (in bytes) of the snapshot name.ADDRESS0x00000000RW0x008

Write 1 to this register to create a snapshot.TRIGGERN/AW0x00c

Write 2 to this register to restore from a snapshot.

3.12. Network Device
3.12.1. Description

This device provides a virtual Ethernet network device. It is based on the Linux virtio-net interface.
For details of the Virtio interface see Chapter 4, “Virtio”.

Two Virtio queues are used. The first to receive incoming packets, and the second to transmit outgoing
packets.

This first 256 bytes of device address space is control registers, as with other devices. Offsets from
0x100 onwards provide access to the virtio-net config space, and accepts accesses of any size.

3.12.2. Sending Packets

Each request should be start with a 10 byte header. This header is not currently used, and should be
zeroed. The remainder of the request constitutes the packet data.

3.12.3. Receiving Packets

Requests in the receive queue should allocate space for a 10 byte header. When a packet arrives the
device will fill in the header, and copy the packet data to the remainder of the request. The header
is currently unused and should be ignored.

3.12.4. Device Properties

compatible syborg,virtio-net

3.12.5. Registers

Table 3.11. Network Device Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d000aR0x000

Virtio device ID.DEVTYPE0x00000001R0x004

For future expansion. Allows the device to expose a
set of feature bits.

H O S T _ F E A -
TURES

impl defR0x008

25

Base Platform Devices

DescriptionNameResetAccessOffset

For future expansion. Allows the driver to acknow-
ledge support for a set of features.

GUEST_FEA-
TURES

0x00000000RW0x00c

Set the address of the selected virtqueue. Should be
aligned on a 4k boundary.

QUEUE_BASE0x00000000RW0x010

The size of the selected virtqueue ring. Will be zero
for unimplemented queues.

QUEUE_NUMimpl defR0x014

Select which virtqueue is accesses by the QUEUE_
BASE and QUEUE_NUM registers. Writing a value

QUEUE_SEL0x00000000RW0x018

of 0 selects is the first queue and writing 1 selects
the second.

Notify the device that new requests have been placed
in a virtqueue. The value written determines which
queue is checked.

QUEUE_NOTI-
FY

N/AW0x01c

Set Virtio device status bits. This is used to inform
the device about the state of the OS driver. The

STATUS0x00000000RW0x020

device will not begin servicing requests until the
device driver indicates that it is ready. A combination
of the following bitflags should be used:

1 The device has been detected.

2 A driver has been associated with the device.

4 The device driver has completed initialization
and it read for operation.

Writing zero to this register resets the device.

INT_ENABLE0x00000000RW0x024 0 Interrupt masked.

1 Interrupt enabled.

Write 0x00000001 to this register to clear the inter-
rupt. Reads will have the low bit set if the notification
interrupt is pending.

INT_STATUS0x00000000RW0x028

The device config is accessible from this offset. The
first 6 bytes of the device config can be read to de-
termine the device MAC address.

configimpl defRW0x100

3.13. NAND Flash Device
3.13.1. Description

This provides NAND flash based storage. The virtual device emulates a connection to a Samsung
NAND flash chips such as the K9F2808U0A.

A backing file for the contents of the flash device can be specified using the -drive
if=mtd,file=filename.img commandline option. The size of the file is used to determine
whether it includes the OOB data. e.g. for a 128Mbit device a 16Mbyte file is treated as 512 byte
blocks, with the additional 16 "spare" bytes per block being held in memory, and initially zeroed. A

26

Base Platform Devices

16.5Mbyte file is treated as a set of 528 byte blocks. If no backing file then all the data is help in
memory and discarded when the virtual machine terminates.

The device also contains an ECC engine to assist with software error detection and correction. This
maintains rolling parity bits based on the values read from and written to the DATA register.

Parity bits are calculated as follows:

P1' bit0 ^ bit2 ^ bit4 ^ bit6 ^ bit8 ^ bit10 ^ bit12 ^ bit14 ...

P1 bit1 ^ bit3 ^ bit5 ^ bit7 ^ bit9 ^ bit11 ^ bit13 ^ bit15 ...

P2' bit0 ^ bit1 ^ bit4 ^ bit5 ^ bit8 ^ bit9 ^ bit12 ^ bit13 ...

P2 bit2 ^ bit3 ^ bit6 ^ bit7 ^ bit10 ^ bit11 ^ bit14 ^ bit15 ...

P4' bit0 ^ bit1 ^ bit2 ^ bit3 ^ bit8 ^ bit9 ^ bit10 ^ bit11 ...

P4 bit4 ^ bit5 ^ bit6 ^ bit7 ^ bit12 ^ bit13 ^ bit14 ^ bit15 ...

etc.

The following devices are supported:

Erase Size (pages)Page Size (bytes)Chip IDSize (Mbit)

162560x6e1

162560x642

165120x6b4

165120xd68

325120x3316

325120x3532

325120x3664

325120x78128

325120x71256

6420480xa2512

6420480xa11024

6420480xaa2048

6420480xac4096

6420480xa38192

6420480xa516384

All devices are 8 bits wide.

3.13.2. Device Properties

compatible syborg,nand

size The size of the flash device in Mbits.

27

Base Platform Devices

3.13.3. Registers

Table 3.12. NAND Flash Device Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d000bR0x000

The low 8 bits of this register map onto the 8 Data
Input/Output pins on the flash chip. The high 24 bits
are ignored.

DATAimpl defRW0x004

Read or write flash chip control pins. Bit mapping as
as follows:

CTL0x00000000RW0x008

Bit0 Command Latch Enable.

Bit1 Address Latch Enable.

Bit2 Chip enable (active low).

Bit3 Write Protect (active low).

Bit4 Read(1)/Busy(0) Output. Writes to this bit
are ignored.

The number of bytes processed by the ECC engine.
Write zero to this register to reset the ECC engine.

ECC_COUNT0x00000000RW0x00c

ECC column parity. Bit mappings as follows:ECC_CP0x00000000RW0x010

Bit0 P1'

Bit1 P1

Bit2 P2'

Bit3 P2

Bit4 P4'

Bit5 P4

Bits 6-31 are unused and read as zero.

ECC line parity. Bit0=P8', Bit1=P8, Bit2=P16',
Bit3=P16, etc.

ECC_LP0x00000000RW0x014

3.14. Audio Device
3.14.1. Description

This device provides audio playback and recording. It is based on the Linux virtio-net interface. For
details of the Virtio interface see Chapter 4, “Virtio”.

Three Virtio queues are used. The first queue is a command queue, used to configure the device.
The remaining queues form two independent audio streams. Each stream can be configured for either
output (playback) or input (recording).

28

Base Platform Devices

Each stream queue transfers sample data to/from the associated stream. Sample data is organised in
frames, with each frame containing one sample for each channel.

This first 256 bytes of device address space is control registers, as with other devices. Offsets from
0x100 onwards provide access to the virtio-net config space, and accepts accesses of any size.

3.14.2. Configuration Commands

The device is configured by placing commands in the command queue. A command is 12 bytes long,
represented by the following structure:

struct virtio_audio_cmd
{
 uint32_t command;
 uint32_t stream;
 uint32_t arg;
};

Each command applied to a single stream. The meaning of the argument is dependent on the command.
Multiple commands may be submitted in a single request. Some commands write a result value,
others simply effect stream operation.

Table 3.13. Audio Device commands

DescriptionvalueCommand

Set the endianess of sample data.1Set Endian

arg=0 Little endian

arg=1 Big endian

Set the number of channels.2Set Channels

1 Mono

2 Stereo

Set the sample format.3Set Format

0 Unsigned 8-integer

1 Signed 8-bit integer

2 Unsigned 16-integer

3 Signed 16-bit integer

4 Unsigned 32-integer

5 Signed 32-bit integer

Set the number of frames per second.4Set Frequency

29

Base Platform Devices

DescriptionvalueCommand

Prepare a stream for operation. This should be done after setting the sample
format and frequency, and before setting the stream running.

5Init

0 Stream is receiving data (capture)

1 Stream is sending data (playback)

This command returns a 32-bit integer specifying the size in bytes of the
hardware buffer associated with this stream. This value may be zero if the
size is not known.

Start for stop stream operation.6Run

0 Stop stream

1 Start stream

3.14.3. Device Properties

compatible syborg,virtio-audio

3.14.4. Registers

Table 3.14. Audio Device Registers

DescriptionNameResetAccessOffset

Peripheral ID.ID0xc51d000aR0x000

Virtio device ID.DEVTYPE0x0000ffffR0x004

For future expansion. Allows the device to expose a
set of feature bits.

H O S T _ F E A -
TURES

impl defR0x008

For future expansion. Allows the driver to acknow-
ledge support for a set of features.

GUEST_FEA-
TURES

0x00000000RW0x00c

Set the address of the selected virtqueue. Should be
aligned on a 4k boundary.

QUEUE_BASE0x00000000RW0x010

The size of the selected virtqueue ring. Will be zero
for unimplemented queues.

QUEUE_NUMimpl defR0x014

Select which virtqueue is accesses by the QUEUE_
BASE and QUEUE_NUM registers. Writing a value

QUEUE_SEL0x00000000RW0x018

of 0 selects is the first queue and writing 1 selects
the second.

Notify the device that new requests have been placed
in a virtqueue. The value written determines which
queue is checked.

QUEUE_NOTI-
FY

N/AW0x01c

Set Virtio device status bits. This is used to inform
the device about the state of the OS driver. The

STATUS0x00000000RW0x020

device will not begin servicing requests until the
device driver indicates that it is ready. A combination
of the following bitflags should be used:

30

Base Platform Devices

DescriptionNameResetAccessOffset

1 The device has been detected.

2 A driver has been associated with the device.

4 The device driver has completed initialization
and it read for operation.

Writing zero to this register resets the device.

INT_ENABLE0x00000000RW0x024 0 Interrupt masked.

1 Interrupt enabled.

Write 0x00000001 to this register to clear the inter-
rupt. Reads will have the low bit set if the notification
interrupt is pending.

INT_STATUS0x00000000RW0x028

The device config is accessible from this offset. The
first bytes the device config can be read to determine
the number of streams implemented by the device.

configimpl defRW0x100

31

Base Platform Devices

Chapter 4
Virtio
Several base platform devices are built on top of the Virtio framework for virtual IO devices.
This chapter describes that framework.

32

4.1. Introducing Virtio
The Virtio framework was developed to allow the Linux kernel to access virtual IO devices provided
by a variety of hypervisors. It provides a common interface for interacting with a variety of different
IO devices.

The majority of communication with a device is done via virtqueues. A virtqueue is a queue of buffers
provided by the guest for consumption by he host. Each buffer may contain several readable or
writable parts, located by a scatter-gather array.

Authorative documentation for Virtio devices can be found in the Linux kernel sources and Russell,
R. 2008. virtio: towards a de-facto standard for virtual I/O devices. SIGOPS Oper. Syst. Rev. 42, 5
(Jul. 2008), 95-103. DOI= http://doi.acm.org/10.1145/1400097.1400108

4.2. Virtio_ring
SVP devices implement virtqueues using a simple ring buffer interface known as virtio_ring.

Each virtio_ring consists of 3 parts: An array of descriptors used to implement scatter-gather lists,
immediately followed by an avail ring used to submit requests to the device. The used ring allows
the device to report request completion, and is located starting on the next 4k page boundary after
the avail ring.

The descriptor array and avail ring are managed and written by the guest OS driver. The used ring
is written by the device and read by the OS driver.

The format of a descriptor is as follows:

struct vring_desc
{
 uint64_t addr;
 uint32_t len;
 uint16_t flags;
 uint16_t next;
};

The addr and len fields identify and area of memory. The next field is used to chain multiple
descriptors into a single request. The flags field is a combination of the following flags:

0x0001 (Next) If set then the next field contains the index of the next descriptor for this
request. If clear then this is the last descriptor in the request.

0x0002 (Write) If set then this section is to be written by the device. If clear then this section
is to be read by the device.

The format of the avail ring is as follows:

struct vring_avail
{
 uint16_t flags;
 uint16_t idx;
 uint16_t ring[NUM];
};

33

Virtio

The idx field is a free running index identifying the head of the submission queue. It indexes (with
wrapping) into a ring of descriptor indexes. This separation of request submission and descriptor
management allows the virtqueue to operate in an asynchronous manner, and prevents long running
requests from blocking short requests.

A notification will be generated when the device reads a request from the avail ring. Setting the low
bit of the flags field will suppress these notifications.

The format of the used ring is as follows:

struct vring_used
{
 uint16_t flags;
 uint16_t idx;
 struct {
 uint16_t id;
 uint16_t len;
 } ring[NUM];
};

The used ring works much the same way as the the avail ring. When a request completes the index
of the first descriptor and the number of bytes is written into the next used ring entry, and the idx
field is incremented. The number of bytes processed may be less than the total submitted. e.g. a
network device may write one packet per request, even if a single request is large enough to hold
multiple packets.

A notification is generated when the device reads a request from the avail ring. Setting the low bit
of the flags field suppresses this notifications.

To submit a new request the OS driver should first construct a descriptor chain for the request. Then
it should write the index of the first descriptor into the next slot in the avail ring. Once this has been
completed the idx field in the avail ring should be incremented. Finally the device should be notified
that new requests are available. Multiple requests may be added before performing the notification.

When the request completes the device will write write it to the next entry in the used ring, then in-
crement the idx field.

Descriptors must not be reused until this has occurred. Some devices may process and complete re-
quests out of order. Provided there are unused descriptors available, Additional requests may be
submitted to the avail ring even if previous requests have not completed. Requests can not be cancelled
or removed once they have been submitted to the device.

A notification is generated when a request completes and is added to the used ring. Setting the low
bit of the flags field suppresses this notifications.

4.3. Virtual Platform Bindings
The base Symbian Virtual Platform does not implement a PCI bus, so the normal Linux device
binding cannot be used. Instead a very similar interface is implemented via a set of memory mapped
registers.

These registers are described in the individual device descriptions.

34

Virtio

Chapter 5
Device Plugins
The Symbian Virtual Platform provides a device plugin mechanism. This allows third party
devices (including emulation of real hardware devices) to be added to the virtual machine.

35

5.1. Introduction
The Symbian Virtual Platform includes a plugin mechanism that allows emulation of additional
devices.

Device plugins are loaded as Python modules. These can be implemented directly in Python, or as
a Python wrapper around some other language (typically C/C++).

Device modules can access to QEMU functionality by importing the qemu module.

5.2. Device Classes
A device class corresponds to a particular type of device. Device classes are implemented as a Python
class derived from qemu.devclass. This class type is then used to instantiate individual devices.

A device class should be derived from qemu.devclass. New device classes can be registered by
calling qemu.register_device(newclass).

The class should define the following attributes:

irqs The number of IRQ outputs used by the device.

regions A list of qemu.ioregion objects describing memory mapped IO regions provided
by the device. Each entry in the list corresponds to an entry in the reg machine
description property.

Each qemu.ioregion object has the following attributes:

size The size of the region, in bytes. This should be a power of two.

readl This function will be called when a read operation occurs. This should
be a method of the containing class. The method will be called with the
offset from the start of the region, and should return the value read.

writel This function will be called when a write operation occurs. This should
be a method of the containing class. The method will be called with the
offset from the start of the region and the value to be written.

name The name of the device. This is matched against the compatible machine de-
scription property.

properties A dictionary of {name:value} pairs. Each name is matched against properties
in the machine description. The value specifies the default value for the property,
and the property type (string or integer) is inferred from the default value. When
a device is instantiated the properties attribute of the device object will be
populated with values from the machine description. If the machine description
does not specify a property then the default will be used.

The chardev property is special. If present this should be given a default value
of None. This will be replaced with a qemu.chardev object when the device is
instantiated.

Device classes should override the following methods:

36

Device Plugins

create(self) Initialize the device. The properties attribute is populated with values
from the machine description before this method is called.

Any attributes or data required by the device should be added in this
function.

save(self, state) Save device state.

load(self, state) Restore device state from state.

Warning

The __init__ method should not be overridden.

5.3. Device Object Methods
Device objects provide the following methods to assist with implementing device emulation:

set_irq_level(irq, level) Rise or lower a device IRQ output. irq is a zero based index
specifying which IRQ to modify. level is zero to lower the
IRQ or one to raise it.

create_
interrupts(callback,
count)

Create input IRQ lines (for interrupt controller type devices).
When the IRQ line state changes the function
callback(irq, level) will be called.

dma_readb(address) Read a byte from system memory.

dma_writeb(address,
value)

Write a byte to system memory.

5.4. Snapshots
In order to support snapshots, devices must be able to save and restore internal state. The is achieved
by overriding the save and load methods. The snapshot state can be accessed via the object passed
to these methods. This state object provides the following methods:

get_u32() Read an unsigned 32-bit integer.

get_u64() Read an unsigned 64-bit integer.

get_s64() Read a signed 64-bit integer.

put_u32() Write an unsigned 32-bit integer.

put_u64() Write an unsigned 64-bit integer.

put_s64() Write a signed 64-bit integer.

5.5.Timers
The qemu.ptimer class provides countdown timer functionality. When the timer reaches zero a
function is called. In one-shot mode the timer is then disabled. In periodic mode the counter is reloaded
and immediately resumes counting down.

37

Device Plugins

Functions are also provided to query the current virtual clock.

qemu.get_clock() Return the current value of the high resolution virtual clock.
This is the number of nanoseconds since the machine was
created.

qemu.start_time() Return the time when the machine was created. This is the
number of seconds since the Unix Epoch (00:00:00 UTC,
January 1, 1970).

qemu.ptimer(tick, freq) Create a new timer counting at the specified frequency (Hz).
The function tick() will be called when the timer expires.

ptimer.count The current counter value.

ptimer.run(oneshot) Start the timer in either one-shot (True) or periodic (False)
mode.

Note
This does not reset the counter value. In one-shot
mode the counter must be explicitly reloaded after
it reaches zero.

ptimer.stop() Stop the timer.

ptimer.set_limit(limit,
reload)

Set the reload value when in periodic mode. This has no effect
in one-shot mode. If reload is True then also set the counter
value to limit.

ptimer.get(state) Restore state from snapshot.

ptimer.put(state) Save state to snapshot.

5.6. Keyboard
The qemu.register_keyboard(handler) function allows a device to respond to keyboard
input. When a keyboard event occurs handler(keycode) is called. The keycode is a standard
PC scancode. Extended scanodes are prefixed by an 0xe0 byte, and bit 7 (0x80) of the scancode in-
dicates whether this is a press (clear) or release (set) event.

5.7. Mouse
The qemu.register_mouse(handler, absolute) function allows a device to respond
to mouse input. When a mouse event occurs handler(x, y, z, buttons) is called. The
absolute argument should be True for touchscreen type devices, and False for mouse type devices.

The x and y values specify the horizontal and vertical cursor position. In absolute mode these are
coordinates between 0 (top/left) and 32767 (bottom/right). In relative mode they are distance from
the previous position.

The z value specifies the movement of the scroll wheel.

Bits 0,1 and 2 of the buttons value specify the state of the left, right and middle mouse buttons
respectively. A set bit indicates that the button is pressed.

38

Device Plugins

5.8. Interfacing with C code
Device plugins may be implemented in any language (e.g. C/C++). However in order to do this a
Python interface to this code must be created. The simplest way to do this is to use SWIG (ht-
tp://www.swig.org/) to generate the interface.

SWIG uses an interface file to generate the Python interface code. In simple cases this interface file
is very similar to the C header file used to declare the functions.

This is best demonstrated by a simple example. Consider the following C code (myfoo.c):

int myfoo(int a, int b)
{
 return a * b;
}

The SWIG interface file (foo.i) for this is as follows:

%module foo
%{
int myfoo(int a, int b);
%}
int myfoo(int a, int b);

The interface file consists of two parts. The section inside %{/%} is used to generate the interface
code, and the second declaration is used to provide C prototypes and inline code for use by this in-
terface code. #include directives can be used to avoid this duplication.

The following command generates the Python interface code for this module:

swig -python foo.i

This command creates two files, foo.py and foo_wrap.c. foo.py provides the Python part of
the module. foo_wrap.c should be linked with your C code to provide the actual implementation
module as follows:

gcc -shared -o _foo.pyd foo_wrap.c myfoo.c \
-I qemu-installdir\include qemu-installdir\lib\python26.dll

The files foo.py and _foo.pyd should then be copied to share\qemu\plugins so that they
can be found by other plugins.

To use this module from a Python plugin it should first be imported with import foo. It can then
be used the same as any other Python module, for example print foo.myfoo(2, 3) will print
6.

For more details about using SWIG, including more complicated examples and how to call Python
routines from C, see see http://www.swig.org/Doc1.1/HTML/Python.html.

39

Device Plugins

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/Doc1.1/HTML/Python.html

	Symbian ADT Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organisation
	3. Typographical Conventions

	Chapter 1 Configuring the Virtual Platform
	1.1. About Flattened Device Trees
	1.2. Board Configuration Files
	1.2.1. Invoking QEMU
	1.2.2. Compiling Device Trees

	1.3. Structure of Board Configuration Trees
	1.3.1. CPU Device Nodes
	1.3.2. Memory Device Nodes
	1.3.3. Peripheral Device Nodes
	1.3.4. Interrupts

	1.4. Example

	Chapter 2 GUI Configuration
	2.1. GUI Structure and Components
	2.2. Using the GUI
	2.3. GUI XML File Specification
	2.3.1. Virtual Terminals
	2.3.2. Buttons
	2.3.3. Display Areas
	2.3.4. Pointer Areas

	2.4. Sample XML File

	Chapter 3 Base Platform Devices
	3.1. Common Device Characteristics
	3.2. Platform Device
	3.2.1. Description
	3.2.2. Device Properties
	3.2.3. Registers

	3.3. Interrupt Controller
	3.3.1. Description
	3.3.2. Device Properties
	3.3.3. Registers

	3.4. Serial Port
	3.4.1. Description
	3.4.2. Device Properties
	3.4.3. Registers

	3.5. Keyboard Controller
	3.5.1. Description
	3.5.2. Device Properties
	3.5.3. Registers

	3.6. Interval Timer
	3.6.1. Description
	3.6.2. Device Properties
	3.6.3. Registers

	3.7. Real-Time Clock
	3.7.1. Description
	3.7.2. Device Properties
	3.7.3. Registers

	3.8. Pointer Controller
	3.8.1. Description
	3.8.2. Device Properties
	3.8.3. Registers

	3.9. Framebuffer
	3.9.1. Description
	3.9.2. Configuring the Framebuffer device
	3.9.3. Pixel Formats
	3.9.4. Device Properties
	3.9.5. Registers

	3.10. Host Filesystem Device
	3.10.1. Description
	3.10.2. Syscalls
	3.10.3. Errors
	3.10.4. Device Properties
	3.10.5. Registers

	3.11. Snapshot Device
	3.11.1. Description
	3.11.2. Device Properties
	3.11.3. Registers

	3.12. Network Device
	3.12.1. Description
	3.12.2. Sending Packets
	3.12.3. Receiving Packets
	3.12.4. Device Properties
	3.12.5. Registers

	3.13. NAND Flash Device
	3.13.1. Description
	3.13.2. Device Properties
	3.13.3. Registers

	3.14. Audio Device
	3.14.1. Description
	3.14.2. Configuration Commands
	3.14.3. Device Properties
	3.14.4. Registers

	Chapter 4 Virtio
	4.1. Introducing Virtio
	4.2. Virtio_ring
	4.3. Virtual Platform Bindings

	Chapter 5 Device Plugins
	5.1. Introduction
	5.2. Device Classes
	5.3. Device Object Methods
	5.4. Snapshots
	5.5. Timers
	5.6. Keyboard
	5.7. Mouse
	5.8. Interfacing with C code

