
Sourcery G++ Lite

ARM SymbianOS

Sourcery G++ Lite 2010q1-190

Getting Started

Sourcery G++ Lite: ARM SymbianOS: Sourcery G++ Lite
2010q1-190: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents
Preface ... iv

1. Intended Audience .. v
2. Organization .. v
3. Typographical Conventions .. v

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Building Your Program ... 2
1.3. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 3
2.1. Terminology ... 4
2.2. System Requirements ... 4
2.3. Downloading an Installer ... 5
2.4. Installing Sourcery G++ Lite .. 5
2.5. Installing Sourcery G++ Lite Updates .. 8
2.6. Setting up the Environment .. 8
2.7. Uninstalling Sourcery G++ Lite .. 10

3. Sourcery G++ Lite for ARM SymbianOS .. 12
3.1. Included Components and Features .. 13
3.2. Library Configurations .. 13
3.3. Building SymbianOS Programs .. 14
3.4. SymbianOS Runtime Libraries ... 16
3.5. NEON SIMD Code .. 16
3.6. Half-Precision Floating Point ... 16
3.7. ABI Compatibility .. 17

4. Using Sourcery G++ from the Command Line ... 18
4.1. Building an Application ... 19
4.2. Running Applications on the Target System ... 19

5. Next Steps with Sourcery G++ .. 20
5.1. Sourcery G++ Knowledge Base .. 21
5.2. Manuals for GNU Toolchain Components ... 21

A. Sourcery G++ Lite Release Notes ... 22
A.1. Changes in Sourcery G++ Lite for ARM SymbianOS ... 23

B. Sourcery G++ Lite Licenses ... 35
B.1. Licenses for Sourcery G++ Lite Components .. 36
B.2. Sourcery G++ Software License Agreement .. 36
B.3. Attribution .. 40

iii

Preface
This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

iv

1. Intended Audience
This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

Chapter 3, “Sourcery G++ Lite for
ARM SymbianOS”

This chapter contains information about using Sourcery G++
Lite that is specific to ARM SymbianOS targets. You should
read this chapter to learn how to best use Sourcery G++ Lite
on your target system.

Chapter 4, “Using Sourcery G++
from the Command Line”

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

Chapter 5, “Next Steps with Sourcery
G++”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

Appendix A, “Sourcery G++ Lite
Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for ARM SymbianOS. You should
read through these notes to learn about new features and bug
fixes.

Appendix B, “Sourcery G++ Lite
Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

v

Preface

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vi

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

1

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for ARM SymbianOS”.

1.1. Installation and Set-Up
Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site1, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

1.2. Building Your Program
Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite.

1.3. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery G++ Lite.You will learn how to:

1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

3

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-none-symbianelf.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery G++ supports the following host operating systems and architectures:

• Microsoft Windows NT 4, Windows 2000, Windows XP, Windows Vista, and Windows 7 systems
using IA32, AMD64, and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SuSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the
default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery G++ Lite on these systems, you must make /bin/sh a symbolic link
to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

4

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery G++ Lite for ARM SymbianOS” for requirements that apply to the target
system.

2.3. Downloading an Installer
If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web site1. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the .exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite
The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

5

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

6

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

7

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-2010q1.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates
If you have already installed an earlier version of Sourcery G++ Lite for ARM SymbianOS on your
system, it is not necessary to uninstall it before using the installer to unpack a new version in the
same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM SymbianOS target all begin with
arm-none-symbianelf. This means that you can install Sourcery G++ for multiple target systems
in the same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

8

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2010q1-190.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

9

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh),
use the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-none-symbianelf/man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2010q1-190.

2.7. Uninstalling Sourcery G++ Lite
The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered. In particular, the
arm-none-symbianelf directory located in the install directory will be removed entirely by
the uninstaller.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the graphical installer. Start the graphical uninstaller by invoking the executable Uninstall execut-
able located in your installation directory, or use the uninstall shortcut created during installation.
After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory with the -i console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

10

Installation and Configuration

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. Start the graphical uninstaller by invoking the executable Uninstall
shell script located in your installation directory. After the uninstaller starts, follow the on-screen
dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a .tar.bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

11

Installation and Configuration

Chapter 3
Sourcery G++ Lite for ARM
SymbianOS
This chapter contains information about features of Sourcery G++ Lite that are specific to
ARM SymbianOS targets. You should read this chapter to learn how to best use Sourcery
G++ Lite on your target system.

12

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery G++ Lite for
ARM SymbianOS, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.4.1GNU Compiler Collection

Includes assembler, linker, and other utilities. Separate
manuals included.

2.19.51GNU Binary Utilities

Debugging support and simulators

Target libraries

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ARM SymbianOS.

ARMv5 - Little-Endian, Soft-Float

defaultCommand-line option(s):

ARMv5 - Little-Endian, VFP

-mfloat-abi=softfpCommand-line option(s):

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

13

Sourcery G++ Lite for ARM SymbianOS

> arm-none-symbianelf-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Building SymbianOS Programs
Building programs for SymbianOS requires you install additional software and follow the SymbianOS
build procedure.

You must install the Symbian SDK1. For Linux hosts, you must install the SDK on a Windows ma-
chine and then make the file system visible on your Linux host. Alternatively, for Linux hosts, the
GnuPoc2 project provides patches. Set the environment variable EPOCROOT to the directory containing
the epoc32 directory of your Symbian SDK installation, and also ensure your PATH variable includes
the $EPOCROOT/epoc32/tools directory. The following commands also make use of epoclib
and epocarch variables for convenience. For instance, if you have installed the SDK at /opt/
symbian-sdk, enter the following commands:

> export EPOCROOT=/opt/symbian-sdk/s60
> PATH=$EPOCROOT/epoc32/tools:$PATH
> epocinc=$EPOCROOT/epoc32/include
> epocarch=$EPOCROOT/epoc32/release/armv5

SymbianOS programs do not start at main, but at E32Main. Using an editor (such as notepad
on Microsoft Windows or vi on UNIX-like systems), create a file named main.cc containing the
following console program:

#include <e32base.h>
#include <e32cons.h>

_LIT (KTxtEPOC32EX, "EXAMPLES");
_LIT (KTxtExampleCode, "Symbian OS Example Code");
_LIT (KTxtOK, "ok [press any key]");

LOCAL_D CConsoleBase* console;

LOCAL_C int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

LOCAL_C void callExampleL () {
 console = Console::NewL
 (KTxtExampleCode,
 TSize (KConsFullScreen, KConsFullScreen));
 CleanupStack::PushL (console);

 _LIT (KHelloWorldText, "Hello world!\n");
 console->Printf (KHelloWorldText);

1 http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_Quick_Start
2 http://gnupoc.sourceforge.net/

14

Sourcery G++ Lite for ARM SymbianOS

http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_Quick_Start
http://gnupoc.sourceforge.net/
http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_Quick_Start
http://gnupoc.sourceforge.net/

 for (int i = 0; i < 10; ++i) {
 int n = factorial (i);
 _LIT (KFactorialText, "factorial(%d) = %d\n");
 console->Printf (KFactorialText, i, n);
 }

 console->Printf (KTxtOK);
 console->Getch ();
 CleanupStack::PopAndDestroy ();
}

GLDEF_C TInt E32Main () {
 __UHEAP_MARK;
 CTrapCleanup *cleanup = CTrapCleanup::New ();
 TRAPD (error, callExampleL ());
 __ASSERT_ALWAYS (!error, User::Panic (KTxtEPOC32EX, error));
 delete cleanup;
 __UHEAP_MARKEND;
 return 0;
}

To compile a program in main.c use the following command:

> arm-none-symbianelf-g++ -march=armv5t -mthumb -mapcs -nostdinc \
 -D__MARM__ -D__MARM_ARMV5__ -D__MARM_THUMB__ \
 -D__MARM_INTERWORK__ -D__EABI__ -D__EXE__ \
 -D_DEBUG -D_UNICODE -D__SUPPORT_CPP_EXCEPTIONS__ \
 -D__GCCE__ -D__SYMBIAN32__ -D__EPOC32__ \
 -D__S60_50__ -D__S60_3X__ -D__SERIES60_3X__ \
 -D__PRODUCT_INCLUDE__=\"$epocinc/variant/symbian_os.hrh\" \
 -include $epocinc/gcce/gcce.h \
 -I $epocinc/libc -I $epocinc -I $epocinc/variant \
 -c -g -o main.o main.cc

You may see some warnings. These are from Symbian SDK header files, not Sourcery G++ files.

You can link your application with:

> arm-none-symbianelf-g++ -march=armv5t -mthumb -mapcs -nostdlib \
 -Wl,--target1-abs -Wl,--no-undefined \
 -Wl,-Ttext,0x8000 -Wl,-Tdata,0x400000 \
 -Wl,--default-symver -Wl,-soname,"factorial{000a0000}.exe" \
 -Wl,--entry,_E32Startup -Wl,-u,_E32Startup \
 $epocarch/udeb/eexe.lib \
 -shared -g -o factorial.sym main.o \
 -Wl,"-(" -Wl,$epocarch/udeb/usrt2_2.lib \
 -Wl,$epocarch/udeb/ecrt0.lib -Wl,"-)" \
 -Wl,$epocarch/lib/estlib.dso \
 -Wl,$epocarch/lib/euser.dso \
 -Wl,$epocarch/lib/dfpaeabi.dso \
 -Wl,$epocarch/lib/dfprvct2_2.dso \
 -Wl,$epocarch/lib/drtaeabi.dso \
 -Wl,$epocarch/lib/scppnwdl.dso \

15

Sourcery G++ Lite for ARM SymbianOS

 -Wl,$epocarch/lib/drtrvct2_2.dso \
 -lsupc++ -lgcc

This produces a factorial.sym file that can be used by arm-none-symbianelf-gdb.

To run the program on SymbianOS, you must convert this file to EPOC32 format using the elf2e32
command. The elf2e32 command is part of the Symbian SDK and not part of Sourcery G++. If
you are using a Linux host, and did not install GnuPoc, you must install Wine3 and invoke elf2e32
as:

> wine $EPOCROOT/epoc32/tools/elf2e32.exe other options

The following command creates factorial.exe:

> elf2e32 --sid=0x00000000 --version=10.0 --uid1=0x1000007a \
 --uid2=0xe8000075 --uid3=0x00000000 --vid=0x70000001 \
 --capability=none --fpu=softvfp --targettype=EXE \
 --output="factorial.exe" --elfinput="factorial.sym" \
 --linkas="factorial{000a0000}.exe" \
 --libpath="$epocarch/lib"

3.4. SymbianOS Runtime Libraries
Sourcery G++ Lite does not include C or C++ runtime libraries for SymbianOS. These are provided
separately by Symbian.

3.5. NEON SIMD Code
Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -ftree-vectorize is not required.

3.6. Half-Precision Floating Point
Sourcery G++ for ARM SymbianOS includes support for half-precision (16-bit) floating point, in-
cluding the new __fp16 data type in C and C++, support for generating conversion instructions
when compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3 http://www.winehq.org/

16

Sourcery G++ Lite for ARM SymbianOS

http://www.winehq.org/
http://www.winehq.org/

3.7. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center4:

• BSABI - ARM IHI 0036B (28 October 2009)

• BPABI - ARM IHI 0037B (28 October 2009)

• EHABI - ARM IHI 0038A (28 October 2009)

• CLIBABI - ARM IHI 0039B (4 November 2009)

• AADWARF - ARM IHI 0040A (28 October 2009)

• CPPABI - ARM IHI 0041C (5 October 2009)

• AAPCS - ARM IHI 0042D (16 October 2009)

• RTABI - ARM IHI 0043C (19 October 2009)

• AAELF - ARM IHI 0044D (28 October 2009)

• ABI Addenda - ARM IHI 0045C (4 November 2009)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

4 http://infocenter.arm.com

17

Sourcery G++ Lite for ARM SymbianOS

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

Chapter 4
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ Lite from the command line.

18

4.1. Building an Application
This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-none-symbianelf,
as indicated by the arm-none-symbianelf command prefix.

Building programs for SymbianOS requires unique command-line arguments and build steps to in-
tegrate with the Symbian SDK; refer to Chapter 3, “Sourcery G++ Lite for ARM SymbianOS” for
details.

4.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them.

19

Using Sourcery G++ from the Command Line

Chapter 5
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

20

5.1. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal1.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

5.2. Manuals for GNU Toolchain Components
Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-symbianelf/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-symbianelf/man/man1

Then you can invoke man as:

> man ./arm-none-symbianelf-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a --help option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

1 https://support.codesourcery.com/GNUToolchain/

21

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Appendix A
Sourcery G++ Lite Release Notes
This appendix contains information about changes in this release of Sourcery G++ Lite for
ARM SymbianOS. You should read through these notes to learn about new features and
bug fixes.

22

A.1. Changes in Sourcery G++ Lite for ARM
SymbianOS
This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 2010q1-190

Improved NEON code generation for 0.0 constants. The compiler now generates better code
for loading double float 0.0 constants on processors supporting NEON instructions.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (in-
cluding stubs to support interworking from ARM mode to Thumb mode and stubs to implement long
branches) to jump to invalid offsets has been fixed.

Improved code generation for if statements. The compiler can now generate better code for
if statements when the then and else clauses contain similar code.

Assembler encoding bug fixes. Several bugs in the assembler have been fixed that caused selection
of incorrect encodings for some instructions that have multiple encodings. The incorrect encodings
are not believed to have affected runtime behavior but were not in conformance with the canonical
encodings specified by the ARM ARM. The objdump command has also been fixed to decode such
instructions correctly.

ARMv7-A performance improvements. The compiler has been enhanced to produce faster code
for the ARM architecture, particularly for ARMv7-A cores, when compiling using the -O2 option.
This results in a significant improvement in performance relative to CodeSourcery's 2009q3 releases.

Linker performance improvement. A bug in the linker that caused applications with many input
files to link slowly has been fixed.

Weak symbols. An assembler bug has been fixed that caused incorrect code to be generated for
references to weak symbols when a default definition is also provided in the same file.

Optimization of ARM NEON vdupq_n* intrinsics. The compiler now generates better code
for vdupq_n* intrinsics to load particular constants.

Linker bug fix for --section-start. A linker bug that caused --section-start to
fail to work as documented if the section is defined in multiple object files has been fixed.

GCC inline assembly bug fixes. A bug that caused NEON/VFP registers specified in the clobber
list of inline assembly statements to be saved and restored incorrectly has been fixed. Another bug
that caused incorrect code when double-precision or quad-precision registers were specified in the
clobber list has also been fixed.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing some data filling directives, such as .fill 0, 0, 0.

Linker bug with Cortex-A8 erratum fix. A bug in the --fix-cortex-a8 linker option,
which is enabled by default when linking ARMv7-A objects, has been fixed. The bug could cause
the linker to generate incorrect shared libraries.

Improved code generation for Cortex-A5. The compiler has been enhanced to provide instruction
scheduling for Cortex-A5 cores. To take advantage of this, use the -mcpu=cortex-a5 command-
line option.

23

Sourcery G++ Lite Release Notes

Better use of NEON instructions on Cortex-A8. The compiler now generates better code when
optimizing for the Cortex-A8 by being less eager to use NEON instructions.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
assembling some Thumb-only instructions in ARM mode. The assembler now gives an error on all
incorrect uses of Thumb-only instructions in ARM mode.

GCC internal compiler error. A bug has been fixed that caused GCC to crash when compiling
some C++ code using templates at -O2 or -O3.

GCC internal compiler error with optimize attribute. A bug has been fixed that caused the
compiler to crash when invoked with the -O0 or -O1 option on code using the optimize attribute
to specify higher optimization levels for individual functions.

C++ array initializer optimization. The compiler now generates better code for some non-constant
array initializations in C++.

A.1.2. Changes in Sourcery G++ Lite 2010q1-153

Debugging preprocessed source code. A compiler bug has been fixed that caused debug output
to erroneously contain the name of the intermediate preprocessed file.

Thumb-2 size optimization improvements. The compiler has been enhanced to produce smaller
code for the ARM architecture, particularly for Thumb-2 mode, when compiling using the -Os option.
This results in a significant improvement in code size relative to CodeSourcery's 2009q3 releases.

Incorrect symbol addresses bug fix. A bug in the linker that caused it to assign incorrect addresses
to symbols has been fixed. The bug occurred when the input objects contained sections not explicitly
mentioned in the linker script.

C++ name-mangling of va_list. The compiler no longer issues the mangling of 'va_
list' has changed warnings for references to std::va_list within system header files.

Static constructor and destructor ordering fixes. The linker now correctly ensures that static
destructors with priorities are executed after destructors without priorities. Another linker bug that
caused incorrect static constructor and destructor ordering with partial linking involved has been
fixed.

Backtracing through noreturn functions. A compiler bug that made it impossible to obtain a
backtrace through functions declared with the noreturn attribute has been fixed. This fix makes
it possible for the debugger to present a useful stack backtrace for applications that call abort.

Linker fix for data-only sections. A bug has been fixed that caused the linker to incorrectly
mark parts of the output as containing code, rather than data, when linking data-only sections not
explicitly tagged as such. The bug resulted in incorrect disassembly.

vcvt assembly bug fix. A bug that caused vcvt.s32.f64 instructions to be misassembled
as vcvtr.s32.f64 has been fixed.

Improved code generation for Cortex-A9. The compiler has been enhanced to provide better
instruction scheduling for Cortex-A9 cores. To take advantage of this, use the -mcpu=cortex-a9
command-line option.

Improved NEON code generation. GCC's code generation for NEON targets (e.g., when com-
piling with -mfpu=neon) has been improved. In particular, the compiler can now make use of
NEON instructions for many 64-bit integer operations.

24

Sourcery G++ Lite Release Notes

Branches between ARM and Thumb fix. An assembler bug that caused incorrect branches
between ARM and Thumb code in different sections has been fixed.

Assembler segmentation fault fix. A bug has been fixed that caused the assembler to crash when
processing code containing invalid Thumb-mode instructions such as ldr r0, 0. The assembler
now produces an error message in such cases.

Assembler fix for Thumb-2. A bug that caused the assembler to reject some valid Thumb-2
strexd instructions has been fixed.

Disassembler bug fix. A bug in the disassembler has been fixed that caused incorrect output for
data objects, including literal pools and the interrupt vector.

NEON assembler fix. The assembler now correctly handles the three-operand form of NEON
logic instructions, such as vorr.i32 q0, q0, #0xff

Warning for deprecated instructions. The assembler now issues warnings about uses of swp
or swpb instructions on architectures where they have been deprecated.

Indirect function call optimization. The instruction sequence used to implement calls via a
function pointer has been improved to give better branch-prediction performance on some processors.

Optimizer bug fix. A bug in GCC that caused internal compiler errors at -O2 or above has been
fixed. The bug also occurred at other optimization levels when the -fpromote-loop-indices
command-line option was used.

Additional error checks in the assembler. The assembler has been improved to perform a
number of additional checks for invalid inputs. In particular, it now diagnoses additional invalid uses
of the PC and SP registers, as specified in the ARM documentation. The assembler now also rejects
invalid NEON alignment qualifiers, such as vld1.8 {d0}, [r0, :128] and vld1.8 {q0},
[r0, :256].

Thumb-2 function call optimization. The compiler has been enhanced to generate improved
code on Thumb-2 targets for functions that return via calls to other functions.

Out-of-range branch error. A compiler bug has been fixed that caused out-of-range branch errors
from the assembler. The bug only affected code compiled in Thumb-2 mode.

Linker relocation diagnostics. A bug that caused the linker to incorrectly diagnose overflows
for some valid relocations has been fixed.

Thumb-2 internal compiler error fix. A bug that caused an internal compiler error when
building the QT library for Thumb-2 has been fixed.

Thumb-2 multiply fix. A bug that caused an invalid muls instruction to be generated in certain
circumstances has been fixed. This affected code compiled for Thumb-2, and resulted in an error
from the assembler.

Internal compiler error fix. A bug that caused an internal compiler error when using
-fno-omit-frame-pointer to compile code for Thumb-2 has been fixed.

A.1.3. Changes in Sourcery G++ Lite 2009q3-63

@FILE fix. A bug has been fixed in the processing of @FILE command-line options by GCC,
GDB, and other tools. The bug caused any options in FILE following a blank line to be ignored.

25

Sourcery G++ Lite Release Notes

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

NEON improvements. The compiler now generates improved NEON vector code when copying
memory or storing constants to memory using the NEON coprocessor. The compiler also generates
better code for accessing data arrays that are not known to have 64-bit alignment. In addition, a bug
that caused internal compiler errors when compiling for Thumb-2 with NEON enabled has been
fixed, as has another bug that caused some vector shift NEON operations to be wrongly rejected.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has
been fixed.

Compiler errors with float32_t. A bug has been fixed that caused compiler errors when
using the float32_t type from arm_neon.h.

Support for ARM Cortex-A5 cores. Sourcery G++ now includes basic support for ARM Cortex-
A5 cores. Use the -mcpu=cortex-a5 command-line option.

Static variables and asm statements bug fix. A bug in GCC that caused functions containing
static variables and asm statements to be miscompiled at -O2 or above has been fixed. The bug also
occurred at other optimization levels when the -fremove-local-statics command-line option
was used.

Warnings for naked functions. A compiler bug that resulted in incorrect warnings about missing
return statements in non-void functions declared with the naked attribute has been fixed.

Optimizer bug fix. A bug in GCC that caused functions with complex loop nests to be miscompiled
at -O2 or above has been fixed. The bug also occurred at other optimization levels when the
-fpromote-loop-indices command-line option was used.

VFPv4 support. Sourcery G++ now includes support for VFPv4, VFPv4-D16 and NEON-VFPv4
coprocessors. Use the -mfpu=vfpv4, -mfpu=vfpv4-d16 or -mfpu=neon-vfpv4 options,
respectively.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.4. Changes in Sourcery G++ Lite 2009q3-35

Improved optimization for ARM. GCC now automatically enables loop unrolling and
-fpromote-loop-indices when -O2 or -O3 is specified. Loop unrolling is limited at -O2
to control code growth. These changes improve performance by more than 5%.

VFP assembly mnemonics. The assembler now accepts unified assembly mnemonics for VFP
instructions (e.g. VADD.f32 s0, s0) in legacy syntax mode.

VFP half-precision extensions. Sourcery G++ now includes support for VFP coprocessors with
half-precision floating-point extensions. This can be enabled with the -mfpu=vfpv3-d16-fp16
or -mfpu=vfpv3-fp16 command-line options.

26

Sourcery G++ Lite Release Notes

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

Improved optimization for Thumb-2. GCC now supports instruction scheduling for Thumb-2
code. This optimization is enabled when compiling with -O2, -O3, or -Os, and can improve per-
formance substantially.

ARM VFP assembler bug fix. The assembler now correctly assembles the vmls, vnmla and
vnmls mnemonics. Previously these were incorrectly assembled to different instructions.

New assembler directive .inst. The assembler now accepts the new .inst directive to gen-
erate an instruction from its integer encoding.

Internal error in assembler. An assembler bug that caused an internal error when .thumb or
.arm appears after an invalid instruction has been fixed.

Improved bit counting operation. The __builtin_ctz built-in function, which returns the
number of trailing zero bits in a value, has been improved to use a shorter instruction sequence for
ARMv6T2 and later.

Out-of-range branch errors. A Thumb-2 code generation defect in the compiler that caused
branch out of range errors from the assembler has been eliminated.

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Linker fix. The linker now correctly processes references to undefined local symbols. Such ref-
erences are treated the same as references to undefined global symbols. Usually object files contain
no such references, as they can never be satisfied.

Assembler validation improvements. The assembler now issues a warning when a section finishes
with an unclosed IT instruction block at the end of the input file. It also now rejects unwinding dir-
ectives that appear outside of a .fnstart/.fnend pair. Additionally, 32-bit Thumb instructions
are now correctly rejected when assembling for cores that do not support these instructions.

Assembler validations fix. A bug in the assembler that caused some addw and subw instructions
with SP or PC as operand to be wrongly rejected has been fixed.

-mauto-it assembler option replaced with -mimplicit-it . The -mauto-it command-
line option to the assembler has been replaced with a more general -mimplicit-it option to
control the behavior of the assembler when conditional instructions appear outside an IT instruction
block. If you were previously using -mauto-it, you should now use -mimplicit-it=always.
Other -mimplicit-it modes allow you to separately control implicit IT instruction insertion
behavior in ARM and Thumb-2 code. For more information, refer to the assembler manual. In addition
to renaming the option, a number of bugs in the implicit IT generation have been fixed.

Linker failure with Cortex-A8 erratum fix. A bug in the --fix-cortex-a8 linker option
has been fixed. The bug caused the linker either to produce a bad value error, or to silently gen-
erate an incorrect executable.

Debug information for variadic functions. A compiler bug that resulted in incorrect debug in-
formation for functions with variable arguments has been fixed.

Overlay sections. arm-none-symbianelf-readelf now correctly recognizes section
headers for ARM_DEBUGOVERLAY and ARM_OVERLAYSECTION sections.

27

Sourcery G++ Lite Release Notes

Code generation improvements. The compiler has been changed to make better use of VFP re-
gisters in mixed integer and floating-point code, resulting in faster code.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Assembler fix for mixed Thumb and ARM mode. A bug in the assembler has been fixed where
mapping symbols were sometimes incorrectly placed at section boundaries. This could lead to incorrect
disassembly in some cases.

-fremove-local-statics optimization. The -fremove-local-statics optimization
is now enabled by default at -O2 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8];).

Linker bug fix. A bug that caused the linker to crash when .ARM.exidx sections were discarded
by a linker script has been fixed.

GCC version 4.4.1. Sourcery G++ Lite for ARM SymbianOS is now based on GCC version
4.4.1. For more information about changes from GCC version 4.3 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.4/changes.html.

Linker map address sorting. The map generated by the linker -Map option now lists symbols
sorted by address.

Assembler fix. The assembler now correctly diagnoses a missing operand to bl and blx instruc-
tions. Previously, incorrect code was silently generated.

A.1.5. Changes in Sourcery G++ Lite 2009q1-162

Incorrect placement of linker-generated functions. A bug that caused some linker-generated
functions (including stubs to support interworking from ARM mode to Thumb mode and stubs to
avoid processor errata) to be placed in data sections has been fixed.

New option for automatically generating IT blocks. The assembler now allows use of condi-
tional Thumb-2 instructions without requiring explicit IT instructions. Use the -mauto-it command-
line option to enable this automatic generation of IT instructions.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Assembler bug fix. A bug in the assembler that caused duplicate and missing mapping symbols
has been fixed. The bug caused incorrect objdump output and incorrect byte-swapping for BE8
configurations.

Stack backtracing and C++ exception handling. Improvements have been made to the linker
in support of C++ runtime exception handling and stack backtracing. A problem that caused crashes
during the backtrace of C routines that were not compiled with the -fexceptions option has
been fixed. In addition, the linker generates more compact stack unwinding tables which can lead
to smaller executables.

28

Sourcery G++ Lite Release Notes

Assembler floating-point format. The assembler now defaults to VFP format for floating-point
numbers. It previously defaulted to the legacy FPA format if no -mcpu or -march option was
specified, or if a CPU with no floating-point unit was specified. This bug resulted in incorrect beha-
vior of the .double and .dcb.d directives.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (such
as stubs to support interworking from ARM mode to Thumb mode) to contain only nop instructions
instead of correct code sequences has been fixed.

Assembler diagnostics for invalid instructions. The assembler now issues diagnostics for invalid
ADR and ADRL instructions. Formerly, these invalid instructions were silently mis-assembled. This
assembler bug did not affect correct code.

Disassembler bug fix. A bug has been fixed that caused incorrect disassembly of some object
files with multiple sections whose symbol tables included symbols in the middle of functions. These
typically resulted from hand-written assembly.

Linker crash with very large applications. A linker bug that caused a crash when linking very
large applications with the --fix-cortex-a8 command-line option has been fixed.

arm-none-symbianelf-objcopy bug fix. A bug has been fixed that caused
arm-none-symbianelf-objcopy to issue an error when generating output in the Intel HEX
format and using --change-section-lma to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

Cortex-A8 erratum workaround enabled for ARMv7-A. The workaround for the erratum in
Cortex-A8 processors mentioned below is now enabled by default if you are targeting the ARMv7-
A architecture profile. The workaround can be disabled by passing the --no-fix-cortex-a8
option to the linker.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

Erratum workaround for Cortex-A8 processors. The linker now implements a workaround
for an erratum in Cortex-A8 processors. If you are targeting an affected part and wish to use the
workaround, pass the --fix-cortex-a8 option to the linker. Please contact ARM for further
details of the erratum.

Maximum code alignment increased. The maximum allowed code alignment has been increased
from 32 to 64 bytes. This change affects the .p2align and .align assembler directives and the
-falign-functions GCC option.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

29

Sourcery G++ Lite Release Notes

A.1.6. Changes in Sourcery G++ Lite 2009q1-115

Incorrect code when using -falign-labels . A bug that caused the compiler to generate
incorrect code for switch statements when the -falign-labels option is used has been fixed.

Loop optimization improvements. A new option, -fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

DMB, DSB, and ISB instructions on ARMv6-M. The assembler now accepts the DMB, DSB, and
ISB instructions on ARMv6-M CPUs, including Cortex-M0 and Cortex-M1. These instructions
were incorrectly rejected on these CPUs in previous releases.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug_str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

Assembler marking of data. Data generated using the assembler directives .ascii, .asciz,
.dc.d, .dc.s, .dc.x, .dcb, .dcb.b, .dcb.d, .dcb.l, .dcb.s, .dcb.w, .dcb.x, .ds,
.ds.b, .ds.d, .ds.l, .ds.p, .ds.s, .ds.w, .ds.x, .double, .fill, .float, .incbin,
.single, .space, .skip, .string, .string8, .string16, .string32, .string64,
and .zero is now correctly marked by the assembler as data rather than code. This fixes incorrect
byte-swapping of such data when linking for BE8 configurations.

Improved vectorization. Automatic vectorization for NEON now uses the fused multiply-add
(VMLA) and fused multiply-subtract (VMLS) instructions. These fused instructions are faster than the
equivalent two-instruction sequence consisting of a multiply followed by an add or subtract.

Out-of-bounds accesses to stack arrays. A bug has been fixed that caused internal compiler
errors when some code involving out-of-bounds accesses to stack-allocated arrays was compiled
with the -mthumb option. Such code is not valid C; although it is now accepted by the compiler
and no diagnostic is issued, it has undefined behavior if executed.

GCC version 4.3.3. Sourcery G++ Lite for ARM SymbianOS is now based on GCC version
4.3.3. This is a bug fix update to GCC. For more information about changes from GCC version 4.3.2
that was included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Improved NOP generation for Thumb-2 cores. The assembler now generates Thumb-2/ARMv6K
architectural NOP instructions when alignment padding is required in code sections.

Internal compiler error with -O3 or -fpredictive-commoning. A bug has been fixed
that caused internal compiler errors when compiling some code with -O3 or
-fpredictive-commoning.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eq and xor_eq
were used in contexts where the preprocessor converts their names to strings.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

30

Sourcery G++ Lite Release Notes

Linker errors on non-ELF input. A bug has been fixed that caused internal errors from the
linker when linking non-ELF input files (with the -b or --format linker options).

Undefined weak references in shared libraries. A linker bug has been fixed affecting calls from
Thumb code in shared libraries to functions that are undefined weak references when the shared
library is linked. Such calls executed as nops whether or not the functions were defined at run time.

Improved code generation. The compiler has been improved to generate better code for an integer
multiplication whose result feeds into an addition.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Performance improvements. Tuning parameters for ARM code generation have been adjusted
to improve performance of the generated code.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

CMP Thumb-2 instruction. The assembler no longer issues an error about CMP instructions in
which the second argument is the stack pointer (r13), as these are valid instructions. However, use
of the stack pointer in this context is deprecated in the current ARM architecture specification and
the assembler now warns about the deprecated use.

Thumb half-precision floating point bug fix. A compiler bug has been fixed that formerly
caused incorrect code to be generated in Thumb mode for functions using half-precision floating-
point constants. The bug did not affect Thumb-2 code.

Improved code generation. The compiler has been improved to generate better code for integer
multiplication by certain constants.

Thumb-2 switch code generation bug fix. A bug has been fixed that caused incorrect Thumb-
2 code to be generated for some switch statements.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Internal compiler error with large NEON types. A bug has been fixed that caused internal
compiler errors when compiling code using NEON types at least 32 bytes wide.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPDIR variables were set to
a suitable directory.

Vectorized shift fix. A bug has been fixed that caused incorrect code for loops containing a right
shift by a constant. The bug affected code compiled with -mfpu=neon and loop vectorization enabled
with -O3 or -ftree-vectorize.

31

Sourcery G++ Lite Release Notes

Incorrect code for nested functions. A bug in GCC that caused the compiler to generate incorrect
code for nested functions has been fixed. The bug resulted in incorrect stack alignments in the affected
functions.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

ARM build attributes conformance improvements. Several ARM EABI 2.07 conformance
issues relating to the handling of build attributes in the assembler and linker have been fixed. All
build attribute types are now recognized, and can now be declared by name, in addition to by number.
Support for merging attributes in the linker has been improved, and the linking of incompatible objects
is now detected and rejected in more cases.

Internal compiler error with -fremove-local-statics. An internal compiler error that
occurred when using the -fremove-local-statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

Linker crash on incompatible input files. Some third-party compilers, including ARM
RealView® 4.0, produce a build attribute marking output files that are not compatible with the ABI
for the ARM Architecture. This attribute sometimes caused the linker to crash. The linker now cor-
rectly issues an error message.

A.1.7. Changes in Sourcery G++ Lite 2008q3-67

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the -a option) on Windows hosts has been fixed.

Optimizer bug fix. A bug that caused an unrecognizable insn internal compiler error
when compiling at optimization levels above -O0 has been fixed.

VFP compiler fix. A compiler bug that resulted in internal compiler error: output_
operand: invalid expression as operand when generating VFP code has been fixed.

Misaligned NEON memory accesses. A bug has been fixed that caused the compiler to use
aligned NEON load/store instructions to access misaligned data when autovectorizing certain loops.
The bug affected code compiled with -mfpu=neon and loop vectorization enabled with -O3 or
-ftree-vectorize.

A.1.8. Changes in Sourcery G++ Lite 2008q3-40

Definition of va_list. In order to conform to the ABI for the ARM Architecture, the definition
of the type of va_list (defined in stdarg.h) has been changed. This change impacts only the
mangled names of C++ entities. For example, the mangled name of a C++ function taking an argument
of type va_list, or va_list *, or another type involving va_list has changed. Since this is
an incompatible change, you must recompile and relink any modules defining or using affected va_
list-typed entities.

Thumb-2 assembler fixes. The Thumb-2 encodings of QADD, QDADD, QSUB, and QDSUB have
been corrected. Previous versions of the assembler generated incorrect object files for these instruc-
tions. The assembler now accepts the ORN, QASX, QSAX, RRX, SHASX, SHSAX, SSAX, USAX,
UHASX, UQSAX, and USAX mnemonics. The assembler now detects and issues errors for invalid
uses of register 13 (the stack pointer) and register 15 (the program counter) in many instructions.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

32

Sourcery G++ Lite Release Notes

Binutils support for DWARF Version 3. The addr2line command now supports binaries
containing DWARF 3 debugging information. The ld command can display error messages with
source locations for input files containing DWARF 3 debugging information.

NEON improvements. Several improvements and bug fixes have been made to the NEON Ad-
vanced SIMD Extension support in GCC. A problem that caused the autovectorizer to fail in some
circumstances has been fixed. Also, many of the intrinsics available via the arm_neon.h header
file now have improved error checking for out-of-bounds arguments, and the vget_lane intrinsics
that return signed values now produce improved code.

NEON compiler fix. A compiler bug that resulted in incorrect NEON code being generated has
been fixed. Typically the incorrect code occurred when NEON intrinsics were used inside small if
statements.

Mixed-case NEON register aliases. An assembler bug that prevented NEON register aliases
from being created with mixed-case names using the .dn and .qn directives has been fixed. Previ-
ously only aliases created with all-lowercase or all-uppercase names worked correctly.

Inline functions declared with dllexport. The compiler now always emits an out-of-line
copy of inline functions declared with the __declspec(dllexport) specifier. This allows such
functions to be referenced from outside the DLL, just like non-inline functions.

Janus 2CC support. GCC now includes a work-around for a hardware bug in Avalent Janus
2CC cores. To compile and link for these cores, use the -mfix-janus-2cc compiler option. If
you are using the linker directly use the --fix-janus-2cc linker option.

ARM exception handling bug fix. A bug in the runtime library has been fixed that formerly
caused throwing an unexpected exception in C++ to crash instead of calling the unexpected exception
handler. The bug only affected C++ code compiled by non-GNU compilers such as ARM RealView®.

Mangling of NEON type names. A bug in the algorithm used by the C++ compiler for mangling
the names of NEON types, such as int8x16_t, has been fixed. These mangled names are used
internally in object files to encode type information in addition to the programmer-visible names of
the C++ variables and functions. The new mangled name encoding is more compact and conforms
to the ARM C++ ABI.

Half-precision floating point. Sourcery G++ now includes support for half-precision floating
point via the __fp16 type in C and C++. The compiler can generate code using either hardware
support or library routines. For more information, see Section 3.6, “Half-Precision Floating Point”.

A.1.9. Changes in Sourcery G++ Lite 2008q3-10

Uppercase operands to IT instructions. The assembler now accepts both uppercase and lowercase
operands for the IT family of instructions.

NEON autovectorizer fix. A compiler bug that caused generation of bad VLD1 instructions has
been fixed. The bug affected code compiled with -mfpu=neon -ftree-vectorize.

Output files removed on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

ARMv7 offset out of range errors. An assembler bug that resulted in offset out of
range errors when compiling for ARMv7 processors has been fixed.

33

Sourcery G++ Lite Release Notes

Symbian binary relocation. The linker now correctly generates relocations for writable data as
data-relative rather than text-relative. The former behavior caused runtime failures accessing writable
data.

Thumb-2 MUL encoding. In Thumb-2 mode, the assembler now encodes MUL as a 16-bit instruction
(rather than as a 32-bit instruction) when possible. This fix results in smaller code, with no loss of
performance.

ARM C++ ABI utility functions. Vector utility functions required by the ARM C++ ABI no
longer crash when passed null pointers. The affected functions are __aeabi_vec_dtor_cookie,
__aeabi_vec_delete, __aeabi_vec_delete3, and __aeabi_vec_delete3_nodtor.
These functions are not intended for use by application programmers; they are only called by compiler-
generated code. They are not presently used by the GNU C++ compiler, but are used by some other
compilers, including ARM's RealView® compiler.

GCC version 4.3.2. Sourcery G++ Lite for ARM SymbianOS is now based on GCC version
4.3.2. For more information about changes from GCC version 4.2 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Smaller Thumb-2 code. When optimizing for size (i.e., when -Os is in use), GCC now generates
the 16-bit MULS Thumb-2 multiply instruction instead of the 32-bit MUL instruction.

Thumb-2 RBIT encoding. An assembler bug that resulted in incorrect encoding of the Thumb-
2 RBIT instruction has been fixed.

Marvell Feroceon compiler bug fix. A bug that caused an internal compiler error when optim-
izing for Marvell Feroceon CPUs has been fixed.

Misaligned accesses to packed structures fix. A bug that caused GCC to generate misaligned
accesses to packed structures has been fixed.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

A.1.10. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM SymbianOS, please
refer to the Getting Started guide packaged with those releases.

34

Sourcery G++ Lite Release Notes

Appendix B
Sourcery G++ Lite Licenses
Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary.This appendix
explains what licenses apply to your use of Sourcery G++ Lite.You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

35

B.1. Licenses for Sourcery G++ Lite Compon-
ents
The table below lists the major components of Sourcery G++ Lite for ARM SymbianOS and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.

Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-arm-none-symbianelf-examples subdirectory. These examples are not
covered by the Sourcery G++ Software License Agreement. To the extent permitted by law, these
examples are provided by CodeSourcery as is with no warranty of any kind, including implied war-
ranties of merchantability or fitness for a particular purpose. Your use of each example is governed
by the license notice (if any) it contains.

B.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

3. Definitions.

36

Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or

3.1.

“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing
information for each “free software” or “open source” component is available in the relevant
source file.

7. CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

37

Sourcery G++ Lite Licenses

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software

38

Sourcery G++ Lite Licenses

or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

39

Sourcery G++ Lite Licenses

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery G++ Lite may include code based on work under the following copyright
and permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

40

Sourcery G++ Lite Licenses

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Building Your Program
	1.3. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for ARM SymbianOS
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Building SymbianOS Programs
	3.4. SymbianOS Runtime Libraries
	3.5. NEON SIMD Code
	3.6. Half-Precision Floating Point
	3.7. ABI Compatibility

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System

	Chapter 5 Next Steps with Sourcery G++
	5.1. Sourcery G++ Knowledge Base
	5.2. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for ARM SymbianOS
	A.1.1. Changes in Sourcery G++ Lite 2010q1-190
	A.1.2. Changes in Sourcery G++ Lite 2010q1-153
	A.1.3. Changes in Sourcery G++ Lite 2009q3-63
	A.1.4. Changes in Sourcery G++ Lite 2009q3-35
	A.1.5. Changes in Sourcery G++ Lite 2009q1-162
	A.1.6. Changes in Sourcery G++ Lite 2009q1-115
	A.1.7. Changes in Sourcery G++ Lite 2008q3-67
	A.1.8. Changes in Sourcery G++ Lite 2008q3-40
	A.1.9. Changes in Sourcery G++ Lite 2008q3-10
	A.1.10. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project

