
E M B E D D E D S O F T W A R E ‘H
O

W
-T

O’

W
H

I
T

E
P

A
P

E
R

w w w . m e n t o r . c o m

HOW-TO GUIDE: USING SOURCERY CODEBENCH
AND MENTOR EMBEDDED SOURCERY PROBE
TO DEBUG THE LINUX KERNEL

KATHLEEN OLIVER, TECHNICAL MARKETING ENGINEER

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
2

ABSTRACT
This How-to Guide provides a detailed, step-by-step introduction to building and debugging the Linux®
kernel with Sourcery™ CodeBench Professional and a Mentor Embedded Sourcery probe device - using a
PandaBoard development board equipped with an OMAP 4430 processor as the target hardware. This paper
demonstrates how to use features of the Sourcery CodeBench IDE to simplify the processes of configuring
the target board, building the kernel, navigating around the kernel sources, and controlling the Sourcery
probe debugger.

INTRODUCTION
Linux is becoming popular on embedded platforms due to many factors, including its openness, availability
on many systems, and robustness. In some cases, taking full advantage of the target hardware may require
modification of the Linux kernel or development of loadable kernel modules. Becoming familiar with and
debugging such a large code base can be daunting to an engineer new to Linux kernel development. This
paper shows how you can use Sourcery CodeBench to ease the initial board bring-up, explore the kernel
source code, and debug a running kernel. Most steps can be accomplished directly from the Sourcery
CodeBench IDE.

This paper is divided into sections that cover the various stages in bringing up a PandaBoard board, using
Sourcery CodeBench to build the kernel, and finally, using a Mentor Embedded Sourcery Probe to debug
the running kernel.

 ■ Section 2, ”Requirement and Environmental Setup” covers what you need need to know and
what you have to complete the steps in this paper.

 ■ Section 3, “Building the Linux Kernel” covers configuring the kernel and using Sourcery
CodeBench to build it.

 ■ Section 4, “Preparing the Target” covers connecting the board and making it ready for development.
This section introduces the Sourcery CodeBench IDE’s built-in terminal for serial I/O and the Remote
Systems Explorer for browsing files on the target.

 ■ Section 5, “Debugging” covers configuring the debug connection, attaching to the running kernel,
and performing the common debug tasks.

This paper focuses on the initial steps required to get started with kernel debugging. Another Mentor
Graphics How-to Guide, Using Sourcery CodeBench to Develop and Debug a Linux Kernel Module, details the
steps required to build and debug a loadable kernel module using the same basic setup described in this
paper.

REQUIREMENTS AND ENVIRONMENTAL SETUP
This paper assumes that you have a basic knowledge of Linux systems, C programming, embedded software,
the Linux kernel build system, and Sourcery CodeBench. A Linux host with a properly installed cross-compiler
is required to build the kernel. The procedures detailed in this document were tested using the following
environment:

 ■ The host for building and debugging the kernel is Ubuntu 10.04 32-bit.

 ■ The uboot-mkimage and lzop packages are installed.

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
3

 ■ Sourcery CodeBench Professional for ARM GNU/Linux 2011.09 or newer installed on the host system.
 TIP: You can download a 30-day evaluation of Sourcery CodeBench for ARM GNU/Linux from:
 http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/evaluations/
 arm-gnulinux

 ■ The target is a PandaBoard Development Kit equipped with an OMAP 4430 processor.

 ■ The board bootloaders, kernel, root filesystem and source code for the PandaBoard come from the
Mentor Embedded Linux Kit for PandaBoard available from: http://go.mentor.com/linux-kits/

 ■ The kernel is debugged over JTAG using Mentor Embedded Sourcery Probe (MESP) Personal for ARM
via the Sourcery CodeBench Debug Sprite. Note that these steps also work for MESP Professional.

 ■ In order to debug a PandaBoard using MESP and Sourcery CodeBench for ARM/GNU Linux 2011.09, you
must download and install a few extra files. To do this, follow the instructions at: https://sourcery.mentor.
com/GNUToolchain/kbentry255?@ok_message=kbentry%20255%20customers%20edited%20ok&@
template=item

BUILDING AND BOOTING THE LINUX KERNEL
The Linux kernel features a huge collection of configuration options. Unfortunately, this means that a pre-built
kernel, such as the one that comes with the board, often doesn’t include all the features that you will need.
This section covers configuring and building a kernel better suited to kernel debugging, and shows how to
replace the stock image with the new image.

While the PandaBoard website publishes system images with a pre-built Linux kernel, for development
purposes, we must build a kernel from source that includes debugging information. We’ll be using the Mentor
Embedded Linux Kit for Panda for the bootloaders, initial kernel, and root filesystem.

PREREQUISITES

 ■ Visit http://go.mentor.com/linux-kits/ to download both the mek-kit-pandaboard.bin installer,
as well as the mek-kit-pandaboard _ sources.tar source file archive.

PREPARING THE LINUX KERNEL

The first step is to fetch the kernel source. The following steps are all performed on your Linux host.
We’ll next touch the board when it is time to load the new kernel on to it.

1. Unpack the source code from the .tar archive into ~/mel-kit-pandaboard _ sources:

$ tar -C ~/mel-kit-pandaboard _ sources -xf <DOWNLOAD DIRECTORY>/
mek-kit-pandaboard _ sources.tar

2. CD into the kernel sources directory:

$ cd ~/mel-kit-pandaboard _ sources/copyleft _ sources/linux-omap4-2.6.35.7-r0c

3. Check out the kernel release:

$ git clone dev.omapzoom.org.pub.scm.integration.kernel-ubuntu.git
panda _ kernel

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
4

4. This creates a directory called panda _ kernel. CD to that directory and switch the working branch
to glp1.4:

$ cd panda _ kernel
$ git checkout glp1.4

5. Patch the kernel. The step below applies all the patches that are included in the MEL Kit source archive:

$ for x in `ls -1 ../*.patch ;̀ do patch -p1 < $x; done;

6. By default, the Linux kernel is configured to build for the host that it is running on. To build for a given
architecture, your build command line should look like this:

make ARCH=arm CROSS _ COMPILE=arm-none-linux-gnueabi- <target>

TIP: The CROSS _ COMPILE variable sets the prefix for the compiler, linker and any other commands used
to build for the target. <target> is the proper build target for your board, which might be zImage or
uImage, etc.

7. Make sure that the Sourcery CodeBench compiler is in your path:

arm-none-linux-gnueabi-gcc --version

 This should return:

arm-none-linux-gnueabi-gcc (Sourcery CodeBench 2011.09-64) 4.6.1
Copyright (C) 2011 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

NOTE: The version information in the output shown above may vary depending on your compiler version.

The build environment is now set up. The next step is to configure the kernel for this board and to turn
on the extra debugging features.

8. Configure the kernel using the MEL Kit for PandaBoard configuration:

 a. Copy the kernel configuration file for the MEL Kit for PandaBoard into your kernel source tree:

 $ cp ~/mel-kit-pandaboard _ sources/copyleft _ sources/linux-omap4-2.6.35.7-
 r0c/defconfig
 ~/mel-kit-pandaboard _ sources/copyleft _ sources/linux-omap4-2.6.35.7-r0c/
 panda _ kernel/.config

 b. Run oldconfig to configure the Linux kernel source tree for pandaboard:

 make ARCH=arm CROSS _ COMIPLE=arm-none-linux-gnueabi- oldconfig

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
5

9. Bring up the kernel configuration system:

make ARCH=arm CROSS _ COMIPLE=arm-none-linux-gnueabi- menuconfig

 a. Go to the Kernel Features section, select Use the ARM EABI to compile the
 kernel, (ie make sure it is enabled with an asterisk beside the feature) and select Exit.

 b. Go to the Kernel hacking section.

 i. Enable the Debug Filesystem.

 ii. Enable Kernel debugging. The screen will change and a number of new,
 debug-related options will come visible.

 iii. Enable Compile the kernel with debug info. This turns on the standard -g
 option to the compiler and linker and expands the vmlinux image to include all the
 symbolic, line-level debugging information needed later.

 c. Select Exit, Exit, and select Yes to save the new configuration.

NOTE: The above selections may already be enabled in your default kernel configuration

RESULTS

Your kernel is now configured and you are ready to import the source in to the Sourcery CodeBench IDE
and build it.

BUILDING THE KERNEL

Now that the kernel has been configured, start Sourcery CodeBench IDE and create the workspace that will
hold the project and debug settings. A workspace is the IDE’s way of grouping together related projects and
settings. Having different workspaces for different tasks allows you to easily switch between jobs and quickly
pick up where you last left off.

This step imports the kernel in to the Sourcery CodeBench IDE and builds it. The result of this will be an image
that you can deploy to the board.

1. Start the Sourcery CodeBench IDE:

./<INSTALLATION _ PATH>/CodeSourcery/Sourcery _ CodeBench _ for _ ARM _ GNU _ Linux/
bin/sourcerygxx-ide

NOTE: During installation of Sourcery CodeBench Professional edition, shortcuts to the executable were
installed in a directory supplied during the installation. You can use your file browser to browse to this
shortcuts directory and simply double-click on the icon representing Sourcery CodeBench IDE.

2. When the Workspace Launcher opens, enter a new Workspace and click OK:

/home/USERNAME/workspace _ panda

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
6

NOTE: You may wish to use your current workspace for this exercise, there is no requirement to select
a new workspace unless you wish to.

3. If the Welcome screen appears, to close it, click X next to Welcome.

4. To create a new project, select File → New → C Project. This opens the C Project wizard.

 a. Enter linux for the project name.

 b. Clear Use default location.

 c. Browse to ~/mel-kit-pandaboard _ sources/copyleft _ sources/linux-omap4-
 2.6.35.7-r0c/panda _ kernel (the location of your top level kernel source tree.)

 d. Expand makefile project and select Empty project.

 e. Click Finish.

NOTE: The Sourcery CodeBench indexer starts up automatically and begins indexing the source files in the
Linux source tree. This is indicated by the status frame at the bottom right of the IDE window. This may take
quite some time depending on your host system. To view the status of the this, click Show background
operations.

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
7

5. Check that mkimage and lzop are installed on your system.

6. Change the default make target in Sourcery CodeBench so it generates uImage:

 a. Right click on linux in the Project explorer pane in the C/C++ perspective and select Properties.
 The Properties dialog box for the linux project opens.

 b. Select C/C++ Build and select the Builder Settings tab.

 c. In Builder Settings, clear the Use default build command check box.

 d. Enter the proper make command in the box:

 make ARCH=arm CROSS _ COMPILE=arm-none-linux-gnueabi- KCFLAGS=-mno-
 unaligned-access uImage

NOTE: If want to speed up the build by using the parallel build system, add -j n to your make command
to speed up the builds:

 make -j 4 ARCH=arm CROSS _ COMPILE=...

NOTE: The mno-unaligned-access- flag prevents the compiler from emitting unaligned accesses. If you
do not pass this option, your kernel will build, but it will not boot.

 e. Click Apply.

 f. Click OK to apply your changes and close the Properties dialog box.

7. To build your project, right-click your project and select Build project.

RESULTS

Once the build has finished the new Linux kernel will be available in arch/arm/boot/uImage.

PREPARING THE TARGET
Sourcery CodeBench includes many of the tools needed in day-to-day embedded development. In this section
we will use the serial terminal to explore and configure the target.

The following setup is assumed for the rest of these instructions. It’s worthwhile writing your setup down now
for later reference.

 ■ The IP address of MESP Personal is 169.254.156.162

 ■ The serial port is a FTDI USB-to-serial adapter that appears at /dev/ttyUSB0 on the Linux host.

 ■ All files including the project files and Linux kernel source code are assumed to be stored on the Linux
host under your home directory at /home/<username>/mel-kit-pandaboard _ sources/
copyleft _ sources/linux-omap4-2.6.35.7-r0c/panda _ kernel

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
8

BOOTING THE TARGET

1. Download and install the free Mentor Embedded Linux Kit for PandaBoard from http://www.mentor.com/
embedded-software/downloads/linux-kits/.

2. Follow the instructions in the PandaBoard Installation and Getting Started Guide to configure your SD card.

3. Copy the kernel image (uImage) you just built to the boot partition of the SD card for the PandaBoard.

4. Connect RS232 port on the PandaBoard to the host over a straight-through serial cable.

5. Connect the ethernet cable to the same network as the host.

6. Connect the MESP Personal to the target and the host and follow the instructions in the Mentor Embedded
Sourcery Probe User’s Manual to configure it.

7. Power on the board.

RESULTS

The green D1 LED should be on. You are now ready to communicate with the target from the host.

USING THE SERIAL TERMINAL TO COMMUNICATE
WITH THE TARGET

Accessing low-level functions such as the boot loader and initial console can only be done over the serial port.
In this section we’ll use the serial terminal included in the Sourcery CodeBench IDE to join the board to the
network. Note that the terminal is included in every Sourcery CodeBench platform, so you do not need to
install a separate terminal emulator utility. The serial terminal is available as a view which can be opened up
from any perspective

WHAT ARE PERSPECTIVES AND VIEWS?

Think of a perspective as looking onto the projects from a certain angle, such as how the debug perspective
looks on to the project with a focus on the tools that are useful when debugging. A view is a window or tool
that is visible in that perspective.

 ■ To open the terminal view, select Window > Show View > Other..., select Terminal, and
double-click New Terminal Connection.

Take some time to browse through the other views that are available and then open the terminal view.

TIP: Double-click on the title bar of a view to maximize it.

Now that the terminal is running, press the reset button on the board. The stage 1 boot, U-Boot, and the
kernel startup will scroll past and finish with a command prompt.

The next step is to identify the ipaddress of the target or to assign an ipaddress to the target.

1. Switch to the terminal view.

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
9

2. Log-in to the board with a login of root. There is not a password.

3. In the terminal window, type ifconfig usb1 192.168.0.110 to assign this network address
to the board.

4. Test the network by running ping 192.168.0.110 on the board. You should see replies coming
back from the host.

That completes the preparation. The board is now set up, on the network, easy to operate with, and contains a
debug-ready kernel.

DEBUGGING USING MENTOR EMBEDDED SOURCERY PROBE
Next you can use a Mentor Embedded Sourcery Probe (MESP) device controlled by the Sourcery CodeBench
Debug Sprite to debug the Linux kernel running on the target.

The Sourcery CodeBench Debug Sprite is an application that acts as an intermediary between the low-level
JTAG debug library and the higher-level remote debug interface used by the debugger. The Debug Sprite
does not require drivers or other software to use the MESP device.

 ■ The Sprite is normally launched automatically from the Sourcery CodeBench IDE.

 ■ Ensure the MESP is connected to both the target and the host.

PROCEDURE

1. Select linux in the Project Explorer.

2. To configure your debug session, select Run → Debug Configurations.... This opens the Debug
Configurations dialog box.

3. To create a new debug configurations. double-click on Sourcery CodeBench Kernel Debug. This
creates a new configuration called linux Debug. Note that if you don’t select the linux project first, the
debug configuration will not be correctly associated with the linux project.

4. On the Main tab of the debug configuration, to set the kernel as the application to be debugged:

 a. Click Search Project... next to C/C++ Application.

 b. Select vmlinux, select armle - /linux/vmlinux as the Qualifier, and click OK.

 c. Click Apply.

5. To choose and configure your debug interface, select the Debugger tab:

 a. From the Debug Interface pull-down menu, select Sourcery Probe.

 b. From the Device pull-down menu, select your MESP device (for example, MESP-Personal / ARM ...).

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

w w w. m ento r.co m
10

Note: If you do not see a MESP device in the list, select Manually Configured Probe and enter the ipaddress
for your probe.

 c. From the Board pull-down menu, select pandaboard.

 d. In the Debugger Options area:

 i. Verify that the Target init script is set to pandaboard.maj and the CPU ID is cortex-a9.
 These options should be set automatically when you set the Board to pandaboard.

 ii. Select Core and set it to 1.

 iii. Click Apply.

6. The debug configuration is now set up. To start your debug session, click Debug.

 a. When the Confirm Perspective Switch dialog comes up, select Remember my decision and click Yes
 to switch to the debug perspective.

7. Starting the session will cause the board halt. Click Resume to resume executing.

The system is now connected up and ready to debug.

 ■ Try clicking the Pause button. You should see the backtrace come up in the Debug view.

 ■ Try double-clicking on different lines in the backtrace to see how the IDE automatically jumps to the right
file and line. Note how the local variables are shown in the Variables view to the right.

 ■ Click on the Resume button to let the kernel continue.

 ■ To stop debugging, press the Stop button. Note that this will halt the target. In some situations
Disconnect is better as it may leave the board running.

 ■ To switch back to the C++ perspective you started in, click on the C/C++ Perspective button. Sourcery
CodeBench has remembered your debug configuration and automatically made it the default.

 ■ Click on the Debug button to start debugging again and automatically switch to the Debug perspective.

HINTS
This section contains some hints that may help you while using Sourcery CodeBench with this board.

 ■ Pressing reset on the board will break the JTAG connection and cause a Target selection failed message
in the IDE. The EmbeddedICE-RT that is built into the CPU is reset just like any other peripheral, breaking
the connection with the Sourcery CodeBench Debug Sprite. The solution is to restart the Sourcery
CodeBench Debug Sprite and start again.

 ■ Make sure you are using a power-safe file system on the board, such as the default JFFS2 or alternatives
such as YAFFS or UBIFS. Kernel debugging is quite intrusive and is more likely to cause corruption in file
systems that are not power safe.

 ■ If you see Ignoring packet error, continuing..., try restarting the Sourcery CodeBench Debug Sprite.

Using Sourcery CodeBench and Mentor Embedded Sourcery Probe to Debug the Linux Kernel

©2012 Mentor Graphics Corporation, all rights reserved. This document contains information that is proprietary to Mentor Graphics Corporation and
may be duplicated in whole or in part by the original recipient for internal business purposes only, provided that this entire notice appears in all copies.
In accepting this document, the recipient agrees to make every reasonable effort to prevent unauthorized use of this information. All trademarks
mentioned in this document are the trademarks of their respective owners.

MGC 05-12 TECH10620-w

F o r t h e l a t e s t p r o d u c t i n f o r m a t i o n , c a l l u s o r v i s i t : w w w . m e n t o r . c o m

 ■ If the debugger can’t find the source for the current location, then make sure the kernel configuration
has Compile the kernel with debug info and rebuild. If the debugger seems to stop at a strange location
when you click Pause, then make sure the correct kernel is flashed into the board.

NEXT STEPS
You now have an environment set up for building and debugging the Linux kernel on your development
board. Sourcery CodeBench Application Note AN003, Using Sourcery CodeBench to Develop and Debug a Linux
Kernel Module, picks up after this note and takes you through the development process of an example kernel
module. Similar to this note, it shows how to build and debug but also covers the special concerns and
problems when developing kernel modules.

CONCLUSION
This paper has covered using Sourcery CodeBench to ease the Linux kernel development process. We’ve set
up early serial communication, bootstrapped the network, configured a debug-able board-specific image,
explored the Linux code base, and remotely debugged the kernel on a development board. These tasks,
covering the range from early bring-up to day-to-day debugging, were done almost entirely within the
Sourcery CodeBench IDE.

FURTHER READINGS

1. Corbet, Rubini, Kroah-Hartman (2005) “Linux Device Drivers, Third Edition” O’Reilly Media, Inc.
Available in print or online.

2. Chapter 2 “Building and Running Modules” and chapter 4 “Debugging Techniques” are particularly useful,
chapter 6 http://lwn.net/Kernel/LDD3/

3. Refer to the Getting Started guide included with your Sourcery CodeBench installation for a tutorial introduction
to the Sourcery CodeBench IDE and more information about using the Sourcery CodeBench Debug Sprite.

For additional information, please visit: mentor.com/embedded

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

