
Using Sourcery G++ to Develop
and Debug a Linux Kernel Module

Sourcery G++ Application Note AN003

March 7, 2011

Abstract

This application note is a continuation of Sourcery G++ Application Note AN002, Using Sourcery
G++ to Debug the Linux Kernel, that guides you through the Linux kernel module development
process. It includes a short introduction to kernel modules and how they work, and shows how to
use Sourcery G++ to build and debug a module.

Particular attention is paid to using a SEGGER J-Link to debug an example kernel module on a
PHYTEC phyCORE-LPC3250 development board.

Copyright © 2010, 2011 CodeSourcery, Inc.
All rights reserved.

1

1. Introduction
A very useful part of the Linux kernel architecture is the support for loadable kernel modules. These
modules allow the otherwise monolithic kernel to be split up into smaller components that can later
be loaded as required, allowing the kernel to ship with support for a wide range features but only
load those that are needed.

Kernel modules also ease the development of new features such as file systems or device drivers, as
a new experimental modules can be quickly built, loaded into a basic kernel, exercised, and then
unloaded. This is much faster then the build, flash, restart process that would otherwise be required.

This application note is a continuation of Sourcery G++ Application Note AN002, Using Sourcery
G++ to Debug the Linux Kernel, that focuses on the procedures for building and debugging kernel
modules.

Section 2, “Requirements” covers the required background knowledge and equipment needed to
complete the note.

Section 3, “Anatomy of a Kernel Module” introduces the Linux kernel, modules system, and the life
cycle of a module.

Section 4, “Developing Kernel Modules” introduces the example module used in the rest of the note,
the build process, and using Sourcery G++ to build and navigate around.

Section 5, “Module Debugging” discusses the considerations unique to kernel modules, loading the
module, the actual debugging, and automating the whole process.

2. Requirements
The procedures for building and debugging a kernel module in the subsequent sections of this note
assume that you have already set up the PHYTEC phyCORE-LPC3250 development board, built
and installed a debuggable Linux kernel, and set up the SEGGER J-Link device with the Sourcery
G++ Debug Sprite, as documented in Sourcery G++ Application Note AN002.

3. Anatomy of a Kernel Module
This section covers the basics of the kernel, modules, and the module life cycle from a developer's
perspective. There's a large body of good information on the Internet and in print about the Linux
kernel and kernel modules such as those listed in Section 7, “Further Readings”.

Linux is a monolithic kernel, where all of the code and data that makes up the image are linked into
one binary and loaded into memory. The kernel module system gives a way of splitting out the support
for optional features so that the running kernel contains only what's needed for a particular configur-
ation. Modules can be loaded on demand by the kernel itself, such as when a new device is plugged
in or an unrecognized file system is mounted, or they can be loaded manually using command-line
utilities. Developing new kernel functionality as a kernel module is convenient, as modules can be
loaded into a running kernel and exercised without having to re-flash or restart.

Internally a module is a standard ELF executable file with a .ko extension and a few special sections
such as .modinfo for the module metadata and .init.text for the module initialization code.
A nice thing about modules being ELF files is that they can be generated and inspected by standard
tools.

2

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Modules are loaded and unloaded using the user-space insmod and rmmod commands. modprobe
is a higher-level tool that also handles dependencies between modules. insmod is quite small as
the actual work is performed by the kernel in kernel/module.c. This handles the loading from
user space, dependencies, relocation, and initialization.

From a debugging point of view, the most interesting step is relocation as it affects the addresses of
any breakpoints or global variables. Relocation is the process of fixing up any internal and undefined
symbols to point to their final locations, meaning that a symbol that starts at certain address in the
module file will have a different address when actually loaded into RAM. Later on in this note we
will use relocation information supplied by the kernel to inform the debugger of this change.

Understanding the kernel memory layout can be helpful when debugging. In the current 2.6 series,
the ARM kernel is laid out as follows:

ContentsEndStart

Vector page, DMA region, and others0xFFFFFFFF0xFF000000

free0xFEFFFFFFVMALLOC_END

vmalloc() / ioremap() spaceVMALLOC_ENDVMALLOC_START

The Linux kernelhigh_memoryPAGE_OFFSET
0xC0000000

Kernel module space (16 MB)PAGE_OFFSET-1
0xBFFFFFFF

TASK_SIZE
0xBF000000

User space (~3 GB)TASK_SIZE-1
0xBEFFFFFF

0x00001000

Vector page / Null pointer trap0x000010000x00000000

Note that these are virtual addresses, which are different than the physical address space of the board.
Kernel modules are allocated into the Kernel module space, meaning that the relocated functions,
static, and global variables will have addresses similar to 0xBF000000. See the documentation on
the ARM Linux Project website1 for more information.

4. Developing Kernel Modules
This section introduces the hello kernel module that we will use for the rest of this note.

4.1. Module and Makefile

/* An example kernel module that shows the life cycle and provides a
 * function to user space over debugfs.
 */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>

MODULE_LICENSE("Dual BSD/GPL");

/* debugfs root directory. Used while cleaning up in exit */
static struct dentry *root_dir;

1 http://www.arm.linux.org.uk/developer/memory.txt

3

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

http://www.arm.linux.org.uk/developer/memory.txt
http://www.arm.linux.org.uk/developer/memory.txt
http://www.arm.linux.org.uk/developer/memory.txt

/* Number of calls to hello_print */
static int calls;

/* Prints some text out to the open debugfs file */
static int hello_print(struct seq_file *s, void *p)
{
 seq_printf(s, "Called %d times\n", ++calls);
 return 0;
}

/* Called when the debugfs file is opened. Pass off to the
 * sequential file helpers
 */
static int hello_open(struct inode *inode, struct file *file)
{
 return single_open(file, hello_print, inode->i_private);
}

/* File operations. Most pass through to the sequential file
 * system
 */
static const struct file_operations hello_fops = {
 .open = hello_open,
 .write = NULL,
 .read = seq_read,
 .llseek = seq_lseek,
 .owner = THIS_MODULE,
};

/* Initializes the module. Create the debugfs directory and
 * file
 */
static int hello_init(void)
{
 printk(KERN_ALERT "Hello world\n");

 root_dir = debugfs_create_dir("hello", NULL);
 debugfs_create_file("ping",
 0444, /* mode */
 root_dir, /* parent */
 NULL, /* callback data */
 &hello_fops);

 return 0;
}

/* Cleans up the module. Delete the debugfs directory and all
 * files under it
 */
static void hello_exit(void)
{
 debugfs_remove_recursive(root_dir);

 printk(KERN_ALERT "Goodbye cruel world\n");

4

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

}

/* Hooks that tell the kernel which functions should be used at
 * initialization and exit
 */
module_init(hello_init);
module_exit(hello_exit);

hello.c is a simple, “Hello world”-style module that we will use in the rest of this note. It creates
a new file at /sys/kernel/debug/hello/ping that can be opened and read from user space.
Reading this file gives a short message that includes the number of times the file has been opened.

A basic module like this is a good introduction to the debugging methods used on much larger
modules. In particular, we can see:

• The life cycle, from the initialisation hello_init through to finalization in hello_exit.

• Exposing data to help debugging through debugfs.

• Causing an event in user space and debugging in kernel space.

• Common debugging such as inspecting variables and the call stack, all while in kernel space.

The Makefile passes most of the work off to the Linux kernel build system:

Makefile that builds the 'hello' kernel module.
#
Derived from Linux Device Drivers, Third Edition
#

If KERNELRELEASE is defined, we've been invoked from the
kernel build system and can use its language.
ifneq ($(KERNELRELEASE),)
obj-m := hello.o

Otherwise we were called directly from the command
line; invoke the kernel build system.
else
PWD := $(shell pwd)
Path to the full kernel tree
KERNELDIR ?= $(PWD)/../linux

User and IP address used to connect to the board
USER = root@192.168.1.40
SSH port number to connect to
PORT = 22

Default rule that calls the kernel build system and builds this
module
all: build

Call the kernel build system
build:
 $(MAKE) -C $(KERNELDIR) M=$(PWD) O=build modules

5

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

hello.ko: build

Helper that removes, copies, loads, and then prints the base
address of the module
load: hello.ko
 -ssh -p $(PORT) $(USER) rmmod $<
 scp -qP $(PORT) $< $(USER):~
 ssh -p $(PORT) $(USER) insmod $<
 ssh -p $(PORT) $(USER) \
 cat /sys/module/$(basename $<)/sections/.text

clean:
 rm -f *.ko *.o *.mod.c *.elf modules.order *.symvers *~

endif

This is an example of a “out-of-tree” module where the files live outside the main Linux kernel tree.
Modules can be built directly from the command line, but it's easier to wrap the rules and variables
up in a Makefile. Here we've used the standard idiom where running the Makefile with no arguments
calls the real kernel build system with the correct arguments instead. This simplifies the build and
integrates better with Sourcery G++.

Near the end of the file are rules that automate the loading of the module onto the board. These will
be used later in the note.

4.2. Creating the Module Project

• Open up the workspace that you created in AN002.

• Switch to a terminal. Take a copy of hello.c and the Makefile and save them in the directory
~/an002/hello. Your directory ~/an002 should now contain the kernel in linux and the
module in hello.

• Switch back to the Sourcery G++ IDE window. The Project Explorer view should contain linux
kernel project in it and nothing else.

• Select File → New → C Project....

• Enter hello for the Project name.

• Expand Makefile project.

• Select Empty project.

• Click Finish.

6

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Creating a new project that builds the module

The newly copied files are automatically added to the project. Sourcery G++ will start building the
module in the background.

4.3. Navigating Around

Click on the triangle next to the hello project in the Project Explorer view to expand the project
and show the automatically found files. Note that you can double click on hello.c or the Makefile
to open them up. Notice the question marks beside the printk() lines and others. At the moment
the project doesn't have the appropriate include paths or defines set and is wrongly reporting an error.

7

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

The main window showing the Project Explorer and editor

Let's tell Sourcery G++ that the module and kernel are related:

• Right click on hello.

• Select Properties.

• Select Project References.

• Click on linux to check it.

• Click on OK to close the window.

8

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Adding a project reference

Sourcery G++ now knows that the module uses the kernel, which enables the advanced features such
as jumping to header files, jumping to definitions, and code completion. Let's try jumping to a
header file:

• Make sure hello.c is open.

• Right click on the #include <linux/debugfs.h> line.

• Select Open Declaration.

• See a new editor containing debugfs.h pop up.

Next let's have a look at the implementation of seq_printf().

• Switch back to the hello.c tab.

• Scroll down to line 19.

• Right click on seq_printf().

• Select Open Declaration.

• See a new editor containing seq_file.c pop up showing the seq_printf() function.

Selecting Open Declaration or pressing F3 again jumps to the definition in the corresponding
header file. It's easy to get back to hello.c as well - try selecting Navigate → Back or pressing
Alt+Left Arrow to work your way back to the top.

5. Module Debugging
Your environment, including the board, host, and Sourcery G++, are now set up for module develop-
ment. In AN002 we exercised the debugger against the kernel. The next step is to load and debug
the module itself.

9

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

5.1. Loading the Module

Modules are like user-space shared libraries in that they are linked at one address and then run at
another. Every time you load a module, the kernel allocates memory from the kernel module space,
copies the module in, and relocates it. Our concern is the dynamic aspect and the relocation: we need
to tell the debugger that the module has been loaded and where each of its sections ended up.

Use the following steps to load a module:

• Copy hello.ko to the board using the RSE.

• Log into the board using either the Terminal or a RSE SSH shell.

• Change to the home root directory using cd /root.

• Load the module with insmod hello.ko.

• See Hello world over on the Terminal. Alternatively you can also see the most recent kernel
messages using dmesg | tail.

We can see where a module ended up by looking under the /sys/modules/hello directory:

[root@nxp /root]# ls -a /sys/module/hello/sections/
.
..
.bss
.data
.gnu.linkonce.this_module
.note.gnu.build-id
.rodata
.rodata.str1.1
.strtab
.symtab
.text
[root@nxp /root]# cat /sys/module/hello/sections/.text
0xbf000000
[root@nxp /root]# cat /sys/module/hello/sections/.bss
0xbf000820
[root@nxp /root]# cat /sys/module/hello/sections/.data
0xbf0006c1

As this is the very first module loaded it has ended up right at the start of the kernel module region
at 0xbf000000. As it is the only module in this system, removing and re-adding it will also put it
back at the same address. We will use this fact later to automate some of the process.

Back on the host, the Makefile has a target that automates the remove old, copy, load, get sections
process. Run make load and you'll see the following:

michaelh@crucis:~/projects/cs/lpc32xx/run/hello$ make load
make -C ~/an002/hello/../linux M=~/an002/hello modules
make[1]: Entering directory `~/an002/linux'
 Building modules, stage 2.
 MODPOST 1 modules
make[1]: Leaving directory `~/an002/linux'
ssh -p 22 root@192.168.1.40 rmmod hello.ko

10

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

scp -qP 22 hello.ko root@192.168.1.40:~
ssh -p 22 root@192.168.1.40 insmod hello.ko
ssh -p 22 root@192.168.1.40 cat /sys/module/hello/sections/.text
0xbf000000

Notice the .text load address right at the end.

Saving the login password

The Sourcery G++ RSE automatically saves the board login password for you. To get a
similar effect from the command line, set up a password-less SSH key and add it to your
SSH agent.

5.2. Debugging

Debugging a kernel module is very similar to the kernel debugging done earlier. The extra step is to
tell the debugger that the module has been loaded and where it has been loaded to. We'll do this
manually the first time and then automate it.

Do the following:

• Switch to the IDE.

• Click on the Debug button to start debugging.

• See the Debug Perspective open.

• If the board is not already paused, click the Suspend button.

Sourcery G++ uses the GNU Debugger in the background to handle many of the debugging operations.
While the board is suspended we can send commands directly to GDB to tell it about the module.

• Click on the down arrow next to the Display Selected Console button.

• Select the console with arm-none-linux-gnueabi-gdb in the name.

• See an empty console with a flashing cursor.

Selecting the GDB console

If you've used GDB before and are used to its command-line system then this may seem a bit unusual.
GDB is running in the special machine interface mode which is much quieter than you may be used
to.

• Tell the debugger about the module using add-symbol-file hello.ko 0xbf000000.

• See

11

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

add-symbol-file hello.ko 0xbf000000
add symbol table from file "hello.ko" at
 .text_addr = 0xbf000000

The debugger now knows about the module. Let's do some debugging:

• Switch to the hello.c editor tab.

• Scroll down to line 19.

• Select Run → Toggle Breakpoint.

• See a dot and a tick appear in the margin. This shows that you have successfully set a breakpoint
on this line.

• Click Resume to start the board running again.

• Log into the board using the Terminal or a RSE SSH shell.

• Change to the modules debugfs directory using cd /sys/kernel/debug/hello.

• Print out the contents of the ping file using cat ping.

• Note that nothing happens and the board halts. The run LED stops flashing.

• Switch back to the IDE.

• In the Debug view see that we've suspended due to a breakpoint hit.

• In the hello.c editor, see that the line we've stopped at is highlighted.

• Try pressing F6 to step over the call to seq_printf().

• See that the highlight moves on to the end of function. Note that the compiler has optimized out
the return 0.

• Click on Resume to hand control back to the board.

• Switch back to the console.

• See Called 1 times and the command prompt on the screen.

12

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Debugging a kernel module

5.3. Automating

We can automate the GDB add-symbol-file command by assuming that the module is always
loaded to the same address and telling the debugger about it at the start of debug. To do this:

• Switch to the IDE.

• Select Run → Debug Configurations....

• Click on hello Debug in the tree.

• Click on the Debugger tab.

• Click on the Startup subtab.

• Click on the Commands before connection box.

• Type in add-symbol-file hello.ko 0xbf000000.

• Click Apply to save these settings.

• Click Close to close the window.

13

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Adding a before command to load the module symbols

Unfortunately we can't also load the module when starting a debug session as we don't know what
state the board is in - it might be reset, halted, booting, or at the command prompt. We can however
add a one-button shortcut by setting up the load as an external tool. To do this:

• Select Run → External Tools → External Tools Configurations....

• See the External Tools Configurations window pop up.

• Click on the New launch configuration button.

• Enter load for the Name.

• Enter /usr/bin/make for the location. The unqualified name make will not work.

• Under Working Directory, click Browse Workspace....

• Select hello.

• Click OK.

• Enter load for the arguments.

• Click on the Build tab.

• De-select Build before launch.

• Click Apply to save the new tool.

• Click Close.

14

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Adding an external tool

We will now add this new tool as a favorite and make it run when you click on the External Tools
button.

• Select Run → External Tools → Organize Favorites....

• Click Add....

• Select load, the new tool we just created.

• Click OK.

• Click OK.

After organizing the external tools

Run the tool for the very first time:

• Click on the down arrow beside the External Tools button.

15

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

• Click load.

Running the new external tool to load the module in

Sourcery G++ will remember this selection and automatically use it next time you click on the main
External Tools button.

5.4. Breakpoint Usage

Kernel modules are much closer to the hardware than the user-space applications you may be used
to. Debugging a kernel module involves the on-chip debug hardware and puts limitations on the type
and number of breakpoints you can have.

Software breakpoints work by modifying memory and are great due to being unlimited in number
and automatically mapped with the virtual memory they apply to. They are only available if the
memory is mapped in and writable. Hardware breakpoints use the on-chip debug support and can
always be set but are limited in number and fixed to a processor address.

As you can see in the memory map above, the main kernel is at a fixed address and never gets mapped
out. When the debugger has control this memory is also writable, meaning that software breakpoints
can be used in the main kernel. Kernel modules do end up at a fixed address but are paged in on de-
mand, meaning that hardware breakpoints must be used.

The LPC3250 uses the EmbeddedICE-RT block seen on most ARM9s and ARM7s. This block
provides two watchpoints that can be used for either breakpoints or data watchpoints. The SEGGER
J-Link will automatically pick between hardware and software breakpoints based on the address and
available resources but be aware that you may have to manage your breakpoints. Note that single
stepping sometimes requires a breakpoint on the next line to work. If you run out of hardware
breakpoints then the system may fall back to a different type of breakpoint or run in a slow instruction-
by-instruction mode.

6. Conclusion
This note has shown how to structure, build, and debug a simple out-of-tree kernel module using the
Sourcery G++ IDE. You can apply the same techniques shown here to developing more complex
target-specific modules such as device drivers.

7. Further Readings
1. Corbet, Rubini, Kroah-Hartman (2005) “Linux Device Drivers, Third Edition” O’Reilly Media,

Inc.

16

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

Available in print or online2. Chapter 2 “Building and Running Modules” and chapter 4 “Debugging
Techniques” are particularly useful.

2. Corbet, J. (2009) “An updated guide to debugfs”. Available at:

➤ http://lwn.net/Articles/334546/

A quick introduction to the Debug filesystem used in this example.

3. Henderson, B. (2006) “Linux Loadable Kernel Module HOWTO”. Available at:

➤ http://tldp.org/HOWTO/Module-HOWTO/

4. Jones, T. (2008) “Anatomy of Linux loadable kernel modules”. Available at:

➤ http://www.ibm.com/developerworks/linux/library/l-lkm/

A good, technical overview of kernel modules and their life cycle.

2 http://lwn.net/Kernel/LDD3/

17

Using Sourcery G++ to Develop and Debug a Linux Kernel Module

http://lwn.net/Kernel/LDD3/
http://lwn.net/Articles/334546/
http://tldp.org/HOWTO/Module-HOWTO/
http://www.ibm.com/developerworks/linux/library/l-lkm/
http://lwn.net/Kernel/LDD3/

	Using Sourcery G++ to Develop and Debug a Linux Kernel Module
	1. Introduction
	2. Requirements
	3. Anatomy of a Kernel Module
	4. Developing Kernel Modules
	4.1. Module and Makefile
	4.2. Creating the Module Project
	4.3. Navigating Around

	5. Module Debugging
	5.1. Loading the Module
	5.2. Debugging
	5.3. Automating
	5.4. Breakpoint Usage

	6. Conclusion
	7. Further Readings

