
E M B E D D E D S O F T W A R E ‘H
O

W
-T

O’

W
H

I
T

E
P

A
P

E
R

w w w . m e n t o r . c o m

HOW-TO GUIDE: BUILDING A LINUX KERNEL
USING THE SOURCERY CODEBENCH IDE

RICARDO ANGUIANO, TECHNICAL MARKETING ENGINEER

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
2

INTRODUCTION
This document demonstrates various techniques using the Mentor® Embedded Sourcery™ CodeBench IDE
to build a Linux® kernel and kernel modules. This paper also demonstrates how to use Sourcery CodeBench to
assist in board bring-up and navigate around a large, complex project such as the Linux kernel. The emphasis
is on maximizing the time spent in a friendly desktop UI, making this an ideal environment for developers who
are more comfortable using an IDE rather than low-level, command-line tools and kernel build procedures.

This paper assumes that you have a basic conceptual knowledge of embedded systems. To keep things brief
many of the intermediate steps are omitted.

REQUIREMENTS
 ■ The host for running Sourcery CodeBench is an x86 computer running the 32-bit Ubuntu Linux 10.04

operating system.

 ■ The uboot-mkimage and lzop packages are installed on the host system.

 ■ Sourcery CodeBench Professional for ARM GNU/Linux 2011.09 or newer installed on the host system.

 ■ A memory card reader capable of reading and writing to secure digital (SD) compatible memory cards.

 ■ The target system is a PandaBoard Development Kit equipped with an OMAP 4430 processor.

 ■ The bootloaders, kernel, root filesystem and source code for the PandaBoard come from the Mentor
Embedded Linux (MEL) Kit for PandaBoard available from: http://go.mentor.com/linux-kits/

Sourcery CodeBench supports a wide range of hosts, JTAG units, and target processors. For more specific
information, visit: http://go.mentor.com/codebench/

PREPARING THE KERNEL SOURCES
You need to prepare the Linux kernel sources to make sure that you are building the right version and have
applied the right patches. While the PandaBoard website publishes system images with a pre-built Linux
kernel, for development purposes you must build a kernel from source that includes debugging information.
The Mentor Embedded Linux Kit for Panda provides precompiled bootloaders, a precompiled kernel, a root
file system, and source code.

PREREQUISITES

 ■ Visit: http://go.mentor.com/linux-kits/ to download both the .bin installer, as well as
the .tar source file archive.

 ■ Follow instructions in the PandaBoard Installation and Quick Start Guide to setup the board.

 ■ Unpack the source code from the .tar archive into ~/mel-kit-pandaboard _ sources.

PROCEDURE

1. Use the command line to go to the directory containing the Linux kernel source code from the
MEL Kit for Panda:

$ cd ~/mel-kit-pandaboard _ sources/copyleft _ sources/linux-omap4-2.6.35.7-r0c

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
3

2. Create a working tree directory named src using the git clone command on the repository directory:

$ git clone dev.omapzoom.org.pub.scm.integration.kernel-ubuntu.git src

3. Go to the src library:

$ cd ~/mel-kit-pandaboard _ sources/copyleft _ sources/linux-omap4-2.6.35.7-r0c/src

4. Check out the glp1.4 branch:

$ git checkout glp1.4

5. Apply the kernel patches included in the MEL Kit source archive:

$ for x in `ls -1 ../*.patch ;̀ do patch -p1 < $x; done;

6. Copy the default Kernel configuration included in the MEL Kit source archive:

$ cp ../defconfig .config

7. Verify the kernel version:

$ head -4 Makefile
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 35
EXTRAVERSION = .7

The output indicates that you have 2.6.35.7. kernel source tree.

RESULTS

You have now checked out the correct source code branch, applied patches included in the MEL Kit for
PandaBoard, and copied the existing MEL Kit for PandaBoard kernel configuration file into your source tree.

PREPARING TO BUILD A KERNEL USING THE CODEBENCH IDE
Now you are ready to import your Linux kernel source code into the Sourcery CodeBench IDE,
and configure your project.

PROCEDURE

1. Start the Sourcery CodeBench IDE from the command line and create a new workspace to hold your work:

$ ~/CodeSourcery/Sourcery _ CodeBench _ for _ ARM _ GNU _ Linux/bin/sourcerygxx-ide

NOTE: The Sourcery CodeBench installer created a directory in your home directory with shortcuts to
documentation and executables. The default name for this directory is Sourcery_CodeBench_for_ARM_EABI.
You can use your file browser to browse the shortcuts directory and simply double-click on the icon
representing Sourcery CodeBench IDE.

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
4

2. Create a new project.

 a. Select File > New > Makefile Project with Existing Code.

 b. Name your project mel-kit-pandaboard _ sources.

 c. Browse to the src directory you prepared above for the Existing Code Location.

 d. Select both the C and C++ Language checkboxes.

 e. Select Sourcery CodeBench for ARM GNU/Linux under Toolchain for Indexer Settings.

 f. Click Finish.

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
5

3. Modify the build properties for this project.

 a. Select Projects > properties.

 b. Select C/C++ Build.

 c. Select the Behavior tab.

 d. Enable Parallel Builds.

 i. Select the Use Parallel Build option.

 ii. Select Use Parallel Jobs.

 iii. Enter the number of parallel jobs to run.

NOTE: The kernel build scales very well so that a parallel build on a quad core machine will finish almost four
times faster. Using the same number of parallel jobs as cores on your build host is a reasonable choice.

IMPORTANT: Do not select the Use Optimal jobs number option, as it spawns unlimited jobs which can
cause your system to run out of memory and crash your machine.

 e. Disable Automatic Builds.

 i. Clear the Build on Resource save (Auto build) check box. You have more control over when
 you build the project if you disable automatic builds.

 f. Click OK to save your changes.

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
6

4. Add environment variables to modify the kernel build process.

 a. Select and expand Project > Properties > C/C++ Build and select Environment.

 b. Click Add... on the right side of the dialog box to add the following environment variables.

The ARCH variable tells the Kernel build system that you are targeting the ARM architecture. The CROSS_
COMPILE variable tells the Kernel build system the toolchain prefix for the cross compiler. The KCFLAGS
variable passes additional toolchain options. In this case, the -mno-unassigned-access flag avoids an
optimization that causes problems for kernel builds. The INSTALL_MOD_PATH variable indicates where the
build system should install the kernel modules.

 c. Click OK to save your changes.

RESULTS

Up to this point, you have now started the Sourcery CodeBench IDE, created a new project, and imported
your Linux source code, configured the project settings, and setup environment variables in preparation for
building your Linux kernel.

Variable Name Value Meaning for Kernel build system

ARCH arm Define the target architecture

CROSS_COMPILE arm-none-linux-gnueabi- Define the cross compiler prefix

KCFLAGS -mno-unaligned-access Pass additional toolchain flags

INSTALL_MOD_PATH ~/modules_install Location for kernel module install

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
7

CREATING MAKEFILE TARGETS
To understand the rest of this build process, it is helpful to understand the traditional kernel build process.
Normally, when building a kernel the following steps occur:

1. Configure the kernel to choose your kernel feature options (make config).

NOTE: There are other kernel makefile targets which will configure your kernel besides the config makefile
target. The menuconfig makefile target will display a curses based text interface on the command line. The
xconfig and gconfig makefile targets will display a GUI interface. All these makefile targets accomplish
the same task, but the user interfaces are different.

2. Build the kernel and modules (make all).

3. Install the kernel and modules (make install).

A kernel config file was provided for you and you have already copied it into the top level source tree as part
of the Preparing the Kernel Sources section above. When reusing an existing kernel configuration, you must
use the oldconfig makefile target instead of the config makefile target. In addition to building the kernel,
you want to use the uImage makefile target so that the kernel build system builds a uImage kernel file for
use with the U-Boot bootloader used on PandaBoard. Lastly, you will not use the install makefile target.
You are building a kernel and modules for the ARM architecture so installing them on an x86 host does not
make sense. Instead, you will copy the files onto the media used to boot the PandaBoard.

Our build process will look like this:

1. Configure the kernel with a preexisting configuration file (make oldconfig).

2. Build the kernel and package it into the uImage file (make uImage).

3. Build the modules (make modules).

4. Install the modules to the module installation directory specified by the INSTALL _ MOD _ PATH
environment variable. (make modules _ install).

5. Copy the uImage file and modules directory to the PandaBoard’s boot media.

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
8

PROCEDURE

1. Create makefile targets in Sourcery CodeBench IDE.

 a. Select Project > Make Target > Create

2. Create make targets for clean, modules, modules _ install, oldconfig, and uImage.

3. Display the makefile targets in the C/C++ perspective.

 a. Select the Make Target tab with the green circle icon in the upper right side of the screen.

 b. Click on the Hide Empty Folders icon.

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
9

RESULTS

You have created the required makefile targets in the Sourcery CodeBench IDE to build
the Linux kernel.

BUILDING A KERNEL AND MODULES
You are now ready to build the Linux kernel and modules.

PROCEDURE

1. Double click on the targets in the Make Target tab in the following order:

Make Target
Invocation Order

Purpose

clean Ensure that you are starting with a clean build

oldconfig Configure the source tree based on the .config file already in place

uImage Build the kernel and package into a uImage file as required by U-Boot

modules Build the kernel modules

modules_install Install the kernel modules in the INSTALL_MOD_PATH directory

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
10

Here’s a sample screenshot after the uImage build has been completed:

RESULTS

You have now built the Linux kernel and modules.

INSTALLING THE KERNEL AND MODULES
Follow these steps to install your newly built kernel and modules onto your PandaBoard boot media.

PROCEDURE

1. Safely shutdown and power off your PandaBoard.

2. Remove the memory card from your PandaBoard.

3. Insert the card into your memory card reader.

4. Connect the memory card reader to your build host where your kernel and modules reside. You will need
root or sudo access on your host for all commands listed on the following page.

Building a Linux Kernel Using the Sourcery CodeBench IDE

w w w. m ento r.co m
11

5. Mount the partitions from the memory card on the host:

$ sudo mount /dev/sdd1 /mnt/sdd1
$ sudo mount /dev/sdd2 /mnt/sdd2

6. Make a backup of your old kernel:

$ sudo cp /mnt/sdd1/uImage /mnt/sdd1/uImage.old

7. Copy your new kernel uImage file to the boot media:

$ sudo cp ~/mel-kit-pandaboard _ sources/copyleft _ sources/
linux-omap4-2.6.35.7-r0c/src/arch/arm/boot/uImage /mnt/sdd1

8. Make a backup of your old kernel modules:

$ sudo mv /mnt/sdd2/lib/modules/2.6.35.7+ /mnt/sdd2/lib/modules/2.6.35.7+.old

9. Copy your new kernel modules to the boot media:

$ sudo cp -a ~/modules _ install/lib /mnt/sdd2

NOTE: Remember, the INSTALL _ MOD _ PATH environment variable defined the installation directory
as ~/modules _ install in the section above titled Preparing to Build a Kernel using the CodeBench
IDE. When you built the modules _ install makefile target above, the modules were installed in
that directory.

10. Recursively change the ownership and group to root on the lib directory in the PandaBoard’s root
filesystem:

$ sudo chown -R root:root /mnt/sdd2/lib

11. Verify the contents of the PandaBoard’s boot media’s first partition with the ls command. The output
should show MLO, u-boot.img, uImage and uImage.old files:

$ sudo ls /mnt/sdd1MLO u-boot.img uImage uImage.old

12. Verify the contents of the PandaBoard’s root filesystem /lib directory with the ls command. You should
see directories with your new and old kernel modules:

$ sudo ls /mnt/sdd2/lib/modules
2.6.35.7+ 2.6.35.7+.old

13. Unmount both partitions from the host:

$ sudo umount /mnt/sdd1
$ sudo umount /mnt/sdd2

Building a Linux Kernel Using the Sourcery CodeBench IDE

©2012 Mentor Graphics Corporation, all rights reserved. This document contains information that is proprietary to Mentor Graphics Corporation and
may be duplicated in whole or in part by the original recipient for internal business purposes only, provided that this entire notice appears in all copies.
In accepting this document, the recipient agrees to make every reasonable effort to prevent unauthorized use of this information. All trademarks
mentioned in this document are the trademarks of their respective owners.

MGC 05-12 1030520-w

F o r t h e l a t e s t p r o d u c t i n f o r m a t i o n , c a l l u s o r v i s i t : w w w . m e n t o r . c o m

14. Disconnect the memory card reader from the host.

15. Remove the memory card from the memory card reader.

16. Insert the memory card into your PandaBoard.

17. Power on the PandaBoard to boot your new kernel.

18. Login and verify that you booted your new kernel with the dmesg command:

dmesg | grep “Linux Version”
Linux version 2.6.35.7+ (user@buildhost) (gcc version 4.6.1 (Sourcery CodeBench
2011.09-78)) #3 SMP PREEMPT Thu Feb 23 08:43:28 PST 2012

RESULTS

You have now installed and booted your newly built Linux kernel and modules.

FURTHER READING

• Kernel build system documentation: http://kernel.org/doc/Documentation/kbuild/kbuild.txt

• Kernel makefile documentation: http://kernel.org/doc/Documentation/kbuild/makefiles.txt

• Kernel makefile target documentation: http://kernel.org/doc/makehelp.txt

