GNU Compiler Collection Internals

For ccc version 4.2.0

Richard M. Stallman and the GcC Developer Community

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSEF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction . v v v v v v oo oo oo s ot v eeeeeessosossssnnees 1
1 Contributing to GCC Development « « v v v v v v v v veeeeenn. 3
2 GCCand Portability . o o oo v v v e iiiiiennn. 5
3 Interfacing to GCC Output + o v v v v e v v v v e vt v veeennnnn 7
4 The GCC low-level runtime library00o.... 9
5 Language Front Endsin GCC.......cvviieoo. 21
6 Source Tree Structure and Build System............... 23
7 Option specification files. « o o v o v v v v v i i i e e enn. 51
8 Passes and Files of the Compilerco.... 55
9 Trees: The intermediate representation used by the C and C++
frontends v oo e ettt it i e e i i 69
10 Analysis and Optimization of GIMPLE Trees 107
11 Analysis and Representation of Loops. ..o v v v eennn. 131
12 RTL Representation........eeeeeeeeeeeeenneeens 141
13 Control Flow Graph. . oo v e e s e s it iiiieeeneenss 189
14 Machine Descriptions « v v oo v oo v v v v v v eeeeeens 199
15 Target Description Macros and Functions 293
16 Host Configuration « . ..o v e e e v veeeeeeeeeeessnss 437
17 Makefile Fragments « o o oo v v v v e e it it i iiinennnn. 441
18 collect2 e v it i i iniiiiieeeeeeeeeonnnnneensess 445
19 Standard Header File Directories . o o v v v v v v v v e v an. 447
20 Memory Management and Type Information 449
Funding Free Software . o v oo v v i et i i iii i, 455
The GNU Project and GNU/Linux . o o v o v v v v v v vveennnnn 457
GNU GENERAL PUBLICLICENSE o e v e v e e e v et n 459
GNU Free Documentation License « v v v v v v v v e e e eeen.. 465
Contributors to GCC . v v v v v v vttt it e e nnnnns 473
Option Index . o o v v v et e ittt sttt i i ennnneannns 489

Concept Index v o v v v ittt ie e e e s s eeeeesooosssss 491

1

GNU Compiler Collection (GCC) Internals

Table of Contents

Introduction................ 1
1 Contributing to GCC Development 3
2 GCC and Portability....................... 5
3 Interfacing to GCC Output................. 7
4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic 9
4.1.1 Arithmetic functions 9
4.1.2 Comparison functions, 10
4.1.3 Trapping arithmetic functions 11
4.1.4 Bit operations.t 11
4.2 Routines for floating point emulation 12
4.2.1 Arithmetic functions 12
4.2.2 Conversion functions............. 13
4.2.3 Comparison functions 14
4.2.4 Other floating-point functions 16
4.3 Routines for decimal floating point emulation................. 16
4.3.1 Arithmetic functions 16
4.3.2 Conversion functions............. 17
4.3.3 Comparison functions 18
4.4 Language-independent routines for exception handling 19
4.5 Miscellaneous runtime library routines 20
4.5.1 Cache control functions 20
5 Language Front Ends in GCC 21
6 Source Tree Structure and Build System ... 23
6.1 Configure Terms and History.............. 23
6.2 Top Level Source Directoryc.oo .. 23
6.3 The ‘gecc’ Subdirectory ... 24
6.3.1 Subdirectories of ‘gec’ ... 25
6.3.2 Configuration in the ‘gcc’ Directory..................... 25
6.3.2.1 Scripts Used by ‘configure’ 26

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files . ..o 26
6.3.2.3 Files Created by configure........................ 26
6.3.3 DBuild System in the ‘gcc’” Directory 27

6.3.4 Makefile Targets. ... 27

iii

iv GNU Compiler Collection (GCC) Internals

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

.. 30

6.3.6 Headers Installed by GCC.............................. 30
6.3.7 Building Documentation 30
6.3.7.1 Texinfo Manuals 31
6.3.7.2 Man Page Generation 31
6.3.7.3 Miscellaneous Documentation 32

6.3.8 Anatomy of a Language Front End...................... 33
6.3.8.1 The Front End ‘language’ Directory 34
6.3.8.2 The Front End ‘config-lang.in’ File.............. 36

6.3.9 Anatomy of a Target Back End 37
6.4 Testsuites. 38
6.4.1 Idioms Used in Testsuite Code.......................... 38
6.4.2 Directives used within DejaGnu tests.................... 39
6.4.3 Ada Language Testsuites............................... 43
6.4.4 C Language Testsuites ..., 44
6.4.5 The Java library testsuites........................... ... 45
6.4.6 Support for testing gcov ... 46
6.4.7 Support for testing profile-directed optimizations......... 47
6.4.8 Support for testing binary compatibility 47

7 Option specification files 51
7.1 Option file format 51
7.2 Option properties 51
8 Passes and Files of the Compiler........... 55
8.1 Parsing passoeiiii 55
8.2 Gimplification pass............coo i 56
8.3 Passmanager.............. i 56
8.4 Tree-SSA PasSes. . ..ot 57
8.5 RIL PaSSes ..o ov et 63

9 'Trees: The intermediate representation used by

the C and C++ frontends............... 69
9.1 Deficienciesv i 69
9.2 OVEIVICW . .ottt e e e e e e e 69

0.2.1 TreeS oot 70

9.2.2 Identifiers..... 70

9.2.3 Contalnersouiuii e 71
9.3 IyPeS et 71
0.4 SCOPES . - et 76

9.4.1 NamMeSPACES . . ot v vttt e 76

9.4.2 ClasSSeS. . .ottt 77
9.5 Declarations 79

9.5.1 Working with declarations.............................. 79

9.5.2 Internal structure............ 81

9.5.2.1 Current structure hierarchy 82

9.5.2.2 Adding new DECL node types 83

9.6 Functions............. .. 84
9.6.1 Function Basics. 85
9.6.2 Function Bodies 88

9.6.2.1 Statements 88

9.7 Attributes In trees. 92

9.8 EXPIessionsSttt 92

10 Analysis and Optimization of GIMPLE Trees

....................................... 107
10.1 GENERIC. 107
10.2 GIMPLE ... 107

10.2.1 Interfaceso 108
10.2.2 Temporaries.oouuviiein e 108
10.2.3 EXPressionsttt it 109
10.2.3.1 Compound Expressions.......................... 109
10.2.3.2 Compound Lvalues.............................. 109
10.2.3.3 Conditional Expressions 109
10.2.3.4 Logical Operators........... 110
10.2.4 Statements.oiiiiii 110
10.2.4.1 BlockS ..o 110
10.2.4.2 Statement Sequencesii.... 111
10.2.4.3 Empty Statements 111
10.2.4:4 LOOPS « v vvee et 111
10.2.4.5 Selection Statements 111
10.2.4.6 JUMPS « oo ve e 111
10.2.4.7 Cleanupscovoi e 111
10.2.4.8 Exception Handling 112
10.2.5 GIMPLE Example.............. 112
10.2.6 Rough GIMPLE Grammar 114
10.3 Annotationsiein 116
10.4 Statement Operands.oiiiiiiinneinnaa.. 117
10.4.1 Operand Iterators And Access Routines 118
10.4.2 Immediate Uses ... 121
10.5 Static Single Assignment.............. 122
10.5.1 Preserving the SSA form....................... 123
10.5.2 Preserving the virtual SSA form 125
10.5.3 Examining SSA_NAME nodes.coooviiinna... 125
10.5.4 Walking use-def chains............................... 126
10.5.5 Walking the dominator tree 126

10.6 Alias analysis. ... 126

vi GNU Compiler Collection (GCC) Internals

11 Analysis and Representation of Loops.... 131

11.1 Loop representation 131
11.2 LOoOp qUETYING . ..o ve ettt e 132
11.3 Loop manipulation 133
11.4 Loop-closed SSA form 134
11.5 Scalar evolutions 134
11.6 IVanalysison RTL i, 135
11.7 Number of iterations analysis 136
11.8 Data Dependency Analysis...............ccoiiiiii ... 137
11.9 Linear loop transformations framework 139
12 RTL Representation.................... 141
12.1 RTL Object Types ...t 141
12.2 RTL Classes and Formats................................. 142
12.3 Access to Operandsovierine i 144
12.4 Access to Special Operands 145
12.5 Flags in an RTL Expression............................... 147
12.6 Machine Modes 153
12.7 Constant Expression Typeso ... 156
12.8 Registers and Memory 158
12.9 RTL Expressions for Arithmetic........................... 163
12.10 Comparison Operations.ooeeiiinneeninaa... 166
12.11 Bit-Fieldso 168
12.12 Vector Operations.ooiiiiiiniiinnenn .. 168
12,13 COnversionS.ttt et 169
12.14 Declarationso 170
12.15 Side Effect Expressions 170
12.16 Embedded Side-Effects on Addresses 175
12.17 Assembler Instructions as Expressions 177
12,18 InSIS . .ot 177
12.19 RTL Representation of Function-Call Insns................ 186
12.20 Structure Sharing Assumptions........................... 186
12.21 Reading RTL o 187
13 Control Flow Graph 189
13.1 BasicBlocks. 189
13.2 Edges ... 190
13.3 Profile information 193
13.4 Maintaining the CFG...... 194

13.5 Liveness information 196

vii

14 Machine Descriptions................... 199
14.1 Overview of How the Machine Description is Used 199
14.2 Everything about Instruction Patterns..................... 199
14.3 Example of define_insn 200
14.4 RTL Template 201
14.5 Output Templates and Operand Substitution............... 204
14.6 C Statements for Assembler Output 206
14.7 Predicates ... 207

14.7.1 Machine-Independent Predicates...................... 208
14.7.2 Defining Machine-Specific Predicates.................. 210
14.8 Operand Constraints 211
14.8.1 Simple Constraints 212
14.8.2 Multiple Alternative Constraints...................... 216
14.8.3 Register Class Preferences............................ 217
14.8.4 Constraint Modifier Characters....................... 217
14.8.5 Constraints for Particular Machines................... 218
14.8.6 Defining Machine-Specific Constraints................. 232
14.8.7 Testing constraints from C 234
14.9 Standard Pattern Names For Generation................... 236
14.10 When the Order of Patterns Matters 256
14.11 Interdependence of Patterns 256
14.12 Defining Jump Instruction Patterns 257
14.13 Defining Looping Instruction Patterns 259
14.14 Canonicalization of Instructions 260
14.15 Defining RTL Sequences for Code Generation 262
14.16 Defining How to Split Instructions........................ 264
14.17 Including Patterns in Machine Descriptions................ 268
14.17.1 RTL Generation Tool Options for Directory Search.... 268
14.18 Machine-Specific Peephole Optimizers 268
14.18.1 RTL to Text Peephole Optimizers.................... 269
14.18.2 RTL to RTL Peephole Optimizers.................... 271
14.19 Instruction Attributes................. 272
14.19.1 Defining Attributes and their Values 272
14.19.2 Attribute Expressions................ooiiiii.. 273
14.19.3 Assigning Attribute Values toInsns.................. 276
14.19.4 Example of Attribute Specifications.................. 277
14.19.5 Computing the Length of an Insn.................... 278
14.19.6 Constant Attributes, 279
14.19.7 Delay Slot Scheduling............................... 279
14.19.8 Specifying processor pipeline description.............. 280
14.20 Conditional Execution................. 286
14.21 Constant Definitions 287
1422 MaCTOS . o oottt e e 287
14.22.1 Mode Macroscovvn e 287
14.22.1.1 Defining Mode Macros. 288
14.22.1.2 Substitution in Mode Macros 288
14.22.1.3 Mode Macro Examples 289

14.22.2 Code MaCroS.o v 290

viii GNU Compiler Collection (GCC) Internals

15 Target Description Macros and Functions

....................................... 293

15.1 The Global targetm Variable 293
15.2 Controlling the Compilation Driver, ‘gcc’.................. 293
15.3 Run-time Target Specification............................. 301
15.4 Defining data structures for per-function information. 303
15.5 Storage Layout......... 304
15.6 Layout of Source Language Data Types.................... 313
15.7 Register Usage 317
15.7.1 Basic Characteristics of Registers..................... 317
15.7.2 Order of Allocation of Registers....................... 319
15.7.3 How Values Fit in Registers 319
15.7.4 Handling Leaf Functions 321
15.7.5 Registers That Form a Stack 322
15.8 Register Classes.ooviin 323
15.9 Obsolete Macros for Defining Constraints 330
15.10 Stack Layout and Calling Conventions.................... 333
15.10.1 Basic Stack Layout 333
15.10.2 Exception Handling Support 337
15.10.3 Specifying How Stack Checking is Done 339
15.10.4 Registers That Address the Stack Frame 340
15.10.5 Eliminating Frame Pointer and Arg Pointer........... 342
15.10.6 Passing Function Arguments on the Stack 343
15.10.7 Passing Arguments in Registers...................... 345
15.10.8 How Scalar Function Values Are Returned............ 350
15.10.9 How Large Values Are Returned 351
15.10.10 Caller-Saves Register Allocation 353
15.10.11 Function Entry and Exit............. 353
15.10.12 Generating Code for Profiling 357
15.10.13 Permitting tail calls............, 357
15.10.14 Stack smashing protection.......................... 358
15.11 Implementing the Varargs Macros........................ 358
15.12 Trampolines for Nested Functions 360
15.13 Implicit Calls to Library Routines........................ 363
15.14 Addressing Modes. ... 364
15.15 Anchored Addresses. ..., 368
15.16 Condition Code Statusooiiieiiiniia.. 369
15.17 Describing Relative Costs of Operations 371
15.18 Adjusting the Instruction Scheduler 375
15.19 Dividing the Output into Sections (Texts, Data, ...) 380
15.20 Position Independent Code 385
15.21 Defining the Output Assembler Language 385
15.21.1 The Overall Framework of an Assembler File 385
15.21.2 Output of Data........... ..., 387
15.21.3 Output of Uninitialized Variables 390
15.21.4 Output and Generation of Labels.................... 391
15.21.5 How Initialization Functions Are Handled 398

15.21.6 Macros Controlling Initialization Routines............ 400

15.21.7 Output of Assembler Instructions.................... 402
15.21.8 Output of Dispatch Tables 405
15.21.9 Assembler Commands for Exception Regions 406
15.21.10 Assembler Commands for Alignment................ 408

15.22 Controlling Debugging Information Format................ 410
15.22.1 Macros Affecting All Debugging Formats............. 410
15.22.2 Specific Options for DBX Output.................... 411
15.22.3 Open-Ended Hooks for DBX Format................. 413
15.22.4 File Names in DBX Format 413
15.22.5 Macros for SDB and DWARF Output................ 414
15.22.6 Macros for VMS Debug Format...................... 416

15.23 Cross Compilation and Floating Point 416
15.24 Mode Switching Instructions 418
15.25 Defining target-specific uses of __attribute__ 419
15.26 Defining coprocessor specifics for MIPS targets. 420
15.27 Parameters for Precompiled Header Validity Checking 421
15.28 C++ ABI parametersc.ooiiiiiiiin.. 421
15.29 Miscellaneous Parameters................................ 422
16 Host Configuration..................... 437
16.1 Host Commonoouiiiii i 437
16.2 Host Filesystem 438
16.3 Host MiSC ..o ov i 439
17 Makefile Fragments..................... 441
17.1 Target Makefile Fragments............... 441
17.2 Host Makefile Fragments............. 443
I8 collect2 ..vviiiiiii ittt iiiiiiiinnnns 445
19 Standard Header File Directories........ 447

....................................... 449

20.1 The Inside of a GTY(O)) ..o 449
20.2 Marking Roots for the Garbage Collector 453
20.3 Source Files Containing Type Information.................. 453
Funding Free Software 455

The GNU Project and GNU/Linux 457

ix

X GNU Compiler Collection (GCC) Internals

GNU GENERAL PUBLIC LICENSE......... 459
Preamble. 459
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . ..o e 460
Appendix: How to Apply These Terms to Your New Programs 464

GNU Free Documentation License 465
ADDENDUM: How to use this License for your documents. 471

Contributors to GCC 473

OptionIndexiiiiiiinnn... 489

Concept Indexcooiiiiinn... 491

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages.
It corresponds to GCC version 4.2.0. The use of the GNU compilers is documented in a
separate manual. See section “Introduction” in Using the GNU Compiler Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability|, page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 21). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

GNU Compiler Collection (GCC) Internals

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for F'TP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

GNU Compiler Collection (GCC) Internals

Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

GNU Compiler Collection (GCC) Internals

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 15 [Target Macros|, page 293).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET _STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

GNU Compiler Collection (GCC) Internals

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in 1ibgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and
all floating-point operations on other machines. libgcc also includes routines for exception
handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 12.6 [Machine Modes], page 153, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi3 (unsigned long a, unsigned long [Runtime Function]
b, unsigned long *c)
unsigned long long __udivti3 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]

long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]
The functions return the product of a and b; that is a * b.

int __negvsi2 (int a) [Runtime Function]

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __subvsi3 (int a, int b) [Runtime Function]

long __subvdi3 (long a, long b) [Runtime Function]

These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int
int
int

int
int
int

int
int

int
int
int

__clzsi2 (int a) [Runtime Function]
__clzdi2 (long a) [Runtime Function]
__clzti2 (long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

__ctzsi2 (int a) [Runtime Function]
__ctzdi2 (long a) [Runtime Function]
__ctzti2 (long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

__ffsdi2 (long a) [Runtime Function]
__ffsti2 (long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

__paritysi2 (int a) [Runtime Function]
__paritydi2 (long a) [Runtime Function]
__parityti2 (long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (int a) [Runtime Function]
int __popcountdi2 (long a) [Runtime Function]
int __popcountti2 (long long a) [Runtime Function]

These functions return the number of bits set in a.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 15.13 [Library Calls],
page 363). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

float __addsf3 (float a, float b) [Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __subsf3 (float a, float b) [Runtime Function]
double __subdf3 (double a, double b) [Runtime Function]
long double __subtf3 (long double a, long double b) [Runtime Function]
long double __subxf3 (long double a, long double b) [Runtime Function]

These functions return the difference between b and a; that is, a — b.

float __mulsf3 (float a, float b) [Runtime Function]
double __muldf3 (double a, double b) [Runtime Function]
long double __multf3 (long double a, long double b) [Runtime Function]
long double __mulxf3 (long double a, long double b) [Runtime Function]

These functions return the product of a and b.

float __divsf3 (float a, float b) [Runtime Function]

double __divdf3 (double a, double b) [Runtime Function]

long double __divtf3 (long double a, long double b) [Runtime Function]

long double __divxf3 (long double a, long double b) [Runtime Function]
These functions return the quotient of a and b; that is, a/b.

float __negsf2 (float a) Runtime Function

[]
double __negdf2 (double a) [Runtime Function]
long double __negtf2 (long double a) [Runtime Function]
long double __negxf2 (long double a) [Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

Chapter 4: The GCC low-level runtime library 13

4.2.2 Conversion functions

double __extendsfdf2 (float a) [Runtime Function]
long double __extendsftf2 (float a) [Runtime Function]
long double __extendsfxf2 (float a) [Runtime Function]
long double __extenddftf2 (double a) [Runtime Function]
long double __extenddfxf2 (double a) [Runtime Function]

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a)

Runtime Function
double __trunctfdf2 (long double a) Runtime Function

[]

[]

float __truncxfsf2 (long double a) [Runtime Function]
[]

]

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
Z€ro.

int __fixsfsi (float a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

long __fixsfdi (float a) [Runtime Function]

long __fixdfdi (double a) [Runtime Function]

long __fixtfdi (long double a) [Runtime Function]

long __fixxfdi (long double a) [Runtime Function]
These functions convert a to a signed long, rounding toward zero.

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (float a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]
unsigned int __fixunsxfsi (long double a) [Runtime Function]

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]
unsigned long __fixunsxfdi (long double a) [Runtime Function]

These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

14 GNU Compiler Collection (GCC) Internals

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative
values all become zero.

float __floatsisf (int 1) [Runtime Function

double __floatsidf (int i) [Runtime Function

long double __floatsitf (int i) [Runtime Function

long double __floatsixf (int i) [Runtime Function
These functions convert i, a signed integer, to floating point.

]
]
]
]

float __floatdisf (long i) [Runtime Function]

double __floatdidf (long i) [Runtime Function]

long double __floatditf (long 1) [Runtime Function]

long double __floatdixf (long 1) [Runtime Function]
These functions convert i, a signed long, to floating point.

float __floattisf (long long i) [Runtime Function]

double __floattidf (long long i) [Runtime Function]

long double __floattitf (long long i) [Runtime Function]

long double __floattixf (long long i) [Runtime Function]
These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int i) [Runtime Function]
long double __floatunsitf (unsigned int 1) [Runtime Function]
long double __floatunsixf (unsigned int 1) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]

double __floatundidf (unsigned long i) [Runtime Function]

long double __floatunditf (unsigned long i) [Runtime Function]

long double __floatundixf (unsigned long i) [Runtime Function]
These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long 1) [Runtime Function]
double __floatuntidf (unsigned long long i) [Runtime Function]
long double __floatuntitf (unsigned long long i) [Runtime Function]
long double __floatuntixf (unsigned long long i) [Runtime Function]

These functions convert i, an unsigned long long, to floating point.

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]

Chapter 4: The GCC low-level runtime library 15

int __cmptf2 (long double a, long double b) [Runtime Function]
These functions calculate a <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,

use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NaN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

16 GNU Compiler Collection (GCC) Internals

int __gtsf2 (float a, float b)
int __gtdf2 (double a, double b)
int __gttf2 (long double a, long double b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is

strictly greater than b.
4.2.4 Other floating-point functions

float __powisf2 (float a, int b)

double __powidf2 (double a, int b)

long double __powitf2 (long double a, int b)

long double __powixf2 (long double a, int b)
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d)

complex double __muldc3 (double a, double b, double c,
double d)

complex long double __multc3 (long double a, long double
b, long double c, long double d)

complex long double __mulxc3 (long double a, long double

b, long double c, long double d)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

These functions return the product of a 4+ ib and ¢ + id, following the rules of C99

Annex G.
complex float __divsc3 (float a, float b, float c, float d)

complex double __divdc3 (double a, double b, double c,
double d)

complex long double __divtc3 (long double a, long double
b, long double c, long double d)

complex long double __divxc3 (long double a, long double

b, long double c, long double d)

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

These functions return the quotient of a4+ ib and ¢ + id (i.e., (a + ib)/(c + id)),

following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754R decimal floating point

arithmetic and is only activated on selected targets.

4.3.1 Arithmetic functions

_Decimal32 __addsd3 (_Decimal32 a, -Decimal32 b)

_Decimal64 __adddd3 (_Decimal64 a, -Decimal64 b)

_Decimall28 __addtd3 (_Decimall28 a, _Decimall28 b)
These functions return the sum of a and b.

_Decimal32 __subsd3 (-Decimal32 a, -Decimal32 b)
_Decimal64 __subdd3 (_Decimal64 a, -Decimal64 b)
_Decimall128 __subtd3 (.Decimall28 a, _Decimall28 b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference between b and a; that is, a — b.

Chapter 4: The GCC low-level runtime library 17

_Decimal32 __mulsd3 (-Decimal32 a, -Decimal32 b) [Runtime Function]

_Decimal64 __muldd3 (_Decimal64 a, -Decimal64 b) [Runtime Function]

_Decimall28 __multd3 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return the product of a and b.

_Decimal32 __divsd3 (_Decimal32 a, -Decimal32 b) [Runtime Function]

_Decimal64 __divdd3 (_Decimal64 a, _Decimal64 b) [Runtime Function]

_Decimall128 __divtd3 (-Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __negsd2 (_Decimal32 a) [Runtime Function]

_Decimal64 __negdd2 (_Decimal64 a) [Runtime Function]

_Decimall28 __negtd2 (_Decimall28 a) [Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.3.2 Conversion functions

_Decimal64 __extendsddd2 (_Decimal32 a)
_Decimall128 __extendsdtd2 (_Decimal32 a)
_Decimall28 __extendddtd2 (_Decimal64 a)
_Decimal32 __extendsfsd (float a) Runtime Function
double __extendsddf (_Decimal32 a) Runtime Function

[Runtime Function]
[]
[]
| |
long double __extendsdxf (_Decimal32 a) [Runtime Function]
[]
[]
[]
[|
[]
[]

Runtime Function
Runtime Function

_Decimal64 __extendsfdd (float a) Runtime Function

_Decimal64 __extenddfdd (double a) Runtime Function

long double __extendddxf (_Decimal64 a) Runtime Function

_Decimall28 __extendsftd (float a) Runtime Function

_Decimall28 __extenddftd (double a) Runtime Function

_Decimal128 __extendxftd (long double a) Runtime Function
These functions extend a to the wider mode of their return type.

Runtime Function
Runtime Function
Runtime Function

_Decimal32 _
_Decimal32 __trunctdsd2 (_Decimall28 a)
_Decimal64 __trunctddd2 (_Decimall28 a)
float __truncsdsf (-Decimal32 a) Runtime Function
_Decimal32 __truncdfsd (double a) Runtime Function

truncddsd2 (-Decimal64 a) [
[
[
[
[

_Decimal32 __truncxfsd (long double a) [Runtime Function
[
[
[
[
[

float __truncddsf (-Decimal64 a) Runtime Function

double __truncdddf (-Decimal64 a) Runtime Function

Runtime Function

Runtime Function

double __trunctddf (_Decimall28 a) Runtime Function

long double __trunctdxf (_Decimall28 a) [Runtime Function
These functions truncate a to the narrower mode of their return type.

_Decimal64 __truncxfdd (long double a)
float __trunctdsf (-Decimall28 a)

]
]
]
]
]
]
]
]
]
]
]
]

int __fixsdsi (_Decimal32 a) [Runtime Function]
int __fixddsi (_Decimal64 a) [Runtime Function]

18 GNU Compiler Collection (GCC) Internals

int __fixtdsi (_Decimall28 a) [Runtime Function]
These functions convert a to a signed integer.

long __fixsddi (_Decimal32 a) [Runtime Function]

long __fixdddi (-Decimal64 a) [Runtime Function]

long __fixtddi (_Decimall28 a) [Runtime Function]
These functions convert a to a signed long.

unsigned int __fixunssdsi (_Decimal32 a) [Runtime Function]

unsigned int __fixunsddsi (_Decimal64 a) [Runtime Function]

unsigned int __fixunstdsi (_Decimall28 a) [Runtime Function]

These functions convert a to an unsigned integer. Negative values all become zero.

unsigned long __fixunssddi (-Decimal32 a) [Runtime Function]
unsigned long __fixunsdddi (_Decimal64 a) [Runtime Function]
unsigned long __fixunstddi (_Decimall28 a) [Runtime Function]

These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __floatsisd (int i) [Runtime Function]
_Decimal64 __floatsidd (int 1) [Runtime Function]
_Decimall128 __floatsitd (int i) [Runtime Function]

These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __floatdisd (long i) [Runtime Function]

_Decimal64 __floatdidd (long i) [Runtime Function]

_Decimall128 __floatditd (long 1) [Runtime Function]
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __floatunssisd (unsigned int i) [Runtime Function]
_Decimal64 __floatunssidd (unsigned int i) [Runtime Function]
_Decimal128 __floatunssitd (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __floatunsdisd (unsigned long i) [Runtime Function]
_Decimal64 __floatunsdidd (unsigned long i) [Runtime Function]
_Decimal128 __floatunsditd (unsigned long i) [Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int __unordsd2 (-Decimal32 a, -Decimal32 b) [Runtime Function]
int __unorddd2 (-Decimal64 a, -Decimal64 b) [Runtime Function]
int __unordtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 19

if (__unordXd2 (a, b))
return E;
return __cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __eqdd2 (_Decimal64 a, -Decimal64 b) [Runtime Function]

int __eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return zero if neither argument is NaN, and a and b are equal.

int __nesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __nedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]

int __netd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]

int __gedd2 (-Decimal64 a, -Decimal64 b) [Runtime Function]

int __getd2 (.Decimall28 a, -Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __1tdd2 (.Decimal64 a, -Decimal64 b) [Runtime Function]
int __1ttd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

int __lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __ledd2 (_Decimal64 a, Decimal64 b) [Runtime Function]
int __letd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NalN,
and a is less than or equal to b.

int __gtsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __gtdd2 (_Decimal64 a, -Decimal64 b) [Runtime Function]
int __gttd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Language-independent routines for exception handling

document me!

_Unwind_DeleteException
_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR
_Unwind_GetIP

20 GNU Compiler Collection (GCC) Internals

_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.5 Miscellaneous runtime library routines

4.5.1 Cache control functions

void __clear_cache (char *beg, char *end) [Runtime Function]
This function clears the instruction cache between beg and end.

Chapter 5: Language Front Ends in GCC 21

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 9 [Trees|, page 69), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

22

GNU Compiler Collection (GCC) Internals

Chapter 6: Source Tree Structure and Build System 23

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘-=host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you're building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
build and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you're not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The 1libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/

24 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fastjar’ An implementation of the jar command, used with the Java front end.

‘gec’ The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 24, for details.

‘include’ Headers for the libiberty library.

‘libada’ The Ada runtime library.
‘libcpp’ The C preprocessor library.

‘libgfortran’
The Fortran runtime library.

‘libffi’ The libffi library, used as part of the Java runtime library.

‘libiberty’
The libiberty library, used for portability and for some generally useful data
structures and algorithms. See section “Introduction” in GNU libiberty, for
more information about this library.

‘libjava’ The Java runtime library.

‘libmudflap’
The libmudflap library, used for instrumenting pointer and array dereferencing
operations.

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See section “GNU configure and build system”
in The GNU configure and build system, for details.

6.3 The ‘gcc’ Subdirectory

The ‘gec’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler]|, page 55.

Chapter 6: Source Tree Structure and Build System 25

6.3.1 Subdirectories of ‘gcc’

The ‘gec’ directory contains the following subdirectories:

‘language’

‘config’

‘doc

‘fixinc’

‘ginclude’

‘intl’

po

‘testsuite’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘cp’ (for C++), ‘objc’ (for Objective-C) and ‘objcp’ (for
Objective-C++) are documented in this manual (see Chapter 8 [Passes and
Files of the Compiler|, page 55); those for other languages are not. See
Section 6.3.8 [Anatomy of a Language Front End], page 33, for details of the
files in these directories.

Configuration files for supported architectures and operating systems. See Sec-
tion 6.3.9 [Anatomy of a Target Back End], page 37, for details of the files in
this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See Sec-
tion 6.3.7 [Documentation], page 30.

The support for fixing system headers to work with GCC. See ‘fixinc/README’
for more information. The headers fixed by this mechanism are installed in
‘libsubdir/include’. Along with those headers, ‘README-fixinc’ is also in-
stalled, as ‘1ibsubdir/include/README’.

System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 30, for details of when these and other headers are installed.

GNU 1libintl, from GNU gettext, for systems which do not include it in libc.
Properly, this directory should be at top level, parallel to the ‘gcc’ directory.

Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

The GCC testsuites (except for those for runtime libraries). See Section 6.4
[Testsuites|, page 38.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The

‘configure’

script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files

‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

26 GNU Compiler Collection (GCC) Internals

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used. FIXME: when is the ‘config.guess’ file in the ‘gcc’ directory (that
just calls the top level one) used?

e The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files], page 26, for details of the
contents of these files.

e FEach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 36, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 17 [Makefile Fragments|, page 441) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language /Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’ is a script that may be run to recreate the current configuration.

e ‘configargs.h’is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’is used as a timestamp.

Chapter 6: Source Tree Structure and Build System 27

e ‘fixinc/Makefile’ is constructed from ‘fixinc/Makefile.in’.

e ‘gccbug’, a script for reporting bugs in GCC, is constructed from ‘gccbug.in’.

e ‘intl/Makefile’ is constructed from ‘intl/Makefile.in’.

e ‘mklibgcc’, a shell script to create a Makefile to build libgcc, is constructed from
‘mklibgcc.in’.

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End

‘config-lang.in’ File], page 36) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’, for use in programs that run on the host machine.
e ‘beconfig.h’, for use in programs that run on the build machine.
e ‘tconfig.h’; for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for
functions in the target ‘.c’ file. FIXME: why is such a separate header necessary?

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 8 [Passes|, page 55).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build /host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.
pdf Produce PDF-formatted documentation.
html Produce HTML-formatted documentation.
man Generate man pages.

info Generate info-formatted pages.
mostlyclean

Delete the files made while building the compiler.
clean That, and all the other files built by ‘make all’.

28 GNU Compiler Collection (GCC) Internals

distclean
That, and all the files created by configure.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

srcextra Generates files in the source directory that do not exist in CVS but should go
into a release tarball. One example is ‘gcc/java/parse.c’ which is generated
from the CVS source file ‘gcc/java/parse.y’.

srcinfo
srcman Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

install Installs gcc.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.1log’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:
make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g. that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

Chapter 6: Source Tree Structure and Build System 29

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N =1...4)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N =1...4)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. For more information,
see section “Building with profile feedback” in Installing GCC.

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N =1...4)
For each package that is bootstrapped, rename directories so that, for example,
‘gcc’ points to the stageN GCC, compiled with the stageN-1 GCC?2.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
