libbfd

The Binary File Descriptor Library

First Edition—BFD version < 3.0 % Since no product is stable before version 3.0 :-)
Original Document Created: April 1991

Steve Chamberlain
Cygnus Support

Free Software Foundation
sac@Qwww.gnu.org

BFD, 1.5

TrXinfo 2004-02-19.09

Copyright (©) 1991, 2001, 2003, 2006 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Table of Contents

1 Introduction..................... 1
1.1 HiStOTy o ooe et 1
1.2 How ToUse BFD 1
1.3 What BFD Version 2 Can Do 2

1.3.1 Information LoSS............ ... 2
1.3.2 The BFD canonical object-file format 3

2 BFDFront End............................ 5
2.1 typedef bfd.......)
2.2 Frror reporting 10

2.2.1 Type bfd_error_typecouuiiiniiiiiiin . 10
2.21.1 bfd_get_errorl 11
2.2.1.2 bfd_set_error 11
2213 bfd_errmsg........... ... 11
2214 bEA_Perror. 11

2.2.2 BFDerrorhandler.............., 12
2.2.2.1 bfd_set_error_handlerc...... 12
2.2.2.2 bfd_set_error_program name..................... 12
2223 bfd_get_error_handler 12

2.3 Miscellaneoust 12

2.3.1 Miscellaneous functions, .. 12
2.3.1.1 bfd_get_reloc_upper_bound...................... 12
2.3.1.2 bfd_canonicalize_relocCoueno... 12
2.3.1.3 bfd_set_reloCoiiiiiiiii. 13
2.3.14 Dbfd_set_file flags........................... 13
2.3.1.5 bfd_get_arch_size............. 13
2.3.1.6 bfd_get_sign_extend_vma........................ 13
2.3.1.7 bfd_set_start_addressiiii... 14
2.3.1.8 bfd_get_gp_size............. 14
2.3.1.9 bfd_set_gp_size...... 14
2.3.1.10 bfd_SCan_vVIauiii e 14
2.3.1.11 bfd_copy_private_header_data.................. 14
2.3.1.12 bfd_copy_private_bfd_data..................... 15
2.3.1.13 bfd_merge_private_bfd_data.................... 15
2.3.1.14 bfd_set_private_flags 15
2.3.1.15 Other functionsc.o i .. 15
2.3.1.16 bfd_alt_mach_code............ ..., 17
2.3.1.17 bfd_preserve_save................coiiiiiiiia... 18
2.3.1.18 bfd_preserve_restore 18
2.3.1.19 bfd_preserve_finish 18
2.3.1.20 bfd_emul_get_maxpagesize...................... 18
2.3.1.21 bfd_emul_set_maxpagesize...................... 19
2.3.1.22 bfd_emul_get_commonpagesize................... 19

2.3.1.23 bfd_emul_set_commonpagesize................... 19

2.3.1.24 bfd_demanglel 19
2.3.1.25 struct bfd_iovec 19
2.3.1.26 bfd_get_mtime............l 20
2.3.1.27 bfd_get_size............. 20
24 Memory Usageovvunit e 21
2.5 Inmitialization....... 21
2.5.1 [Initialization functions 21
2511 bfd_init......... 21
2.6 SeCHiONS 21
2.6.1 Section INPUbo 21
2.6.2 Section output.t 22
2.6.3 Linkorders.......... ... 22
2.6.4 typedefasection 22
2.6.5 Section prototypescouiii 34
2.6.5.1 bfd_section_list_clear......................... 34
2.6.5.2 bfd_get_section_by_ name........................ 34
2.6.5.3 bfd_get_section_by name_if..................... 34
2.6.5.4 bfd_get_unique_section_name.................... 34
2.6.5.5 bfd_make_section_old _way....................... 35
2.6.5.6 bfd_make_section_anyway_with_flags............ 35
2.6.5.7 bfd_make_section_anyway 35
2.6.5.8 bfd_make_section_with_flags.................... 35
2.6.5.9 bfd_make_section...............c..oiiiiiii... 36
2.6.5.10 bfd_set_section_flags......................... 36
2.6.5.11 bfd_map_over_sections 36
2.6.5.12 bfd_sections_find_if 36
2.6.5.13 bfd_set_section_size 37
2.6.5.14 bfd_set_section_contents...................... 37
2.6.5.15 bfd_get_section_contents...................... 37
2.6.5.16 bfd_malloc_and_get_section.................... 37
2.6.5.17 bfd_copy_private_section_data 38
2.6.5.18 bfd_generic_is_group_section.................. 38
2.6.5.19 bfd_generic_discard_group..................... 38
2.7 SymbolS . .. 38
2.7.1 Reading symbols........ 39
2.7.2 Writing symbols 39
2.7.3 Mini Symbols ... 40
2.7.4 typedef asymbol 40
2.7.5 Symbol handling functions 43
2.7.5.1 bfd_get_symtab_upper_bound..................... 43
2.7.5.2 bfd_is_local_label.............cooiiiiiinninn... 43
2.7.5.3 bfd_is_local_label name........................ 44
2.7.5.4 bfd_is_target_special_symbol................... 44
2.7.5.5 bfd_canonicalize_symtab........................ 44
2.7.5.6 bfd_set_symtab..............l 44
2.7.5.7 bfd_print_symbol_vandf 45

2.7.5.8 bfd_make_empty_symbol 45

2.7.5.9 _bfd_generic_make_empty_symbol 45

2.7.5.10 bfd_make_debug_symbol 45
2.7.5.11 bfd_decode_symclassccuuieiinn... 45
2.7.5.12 bfd_is_undefined_symclass..................... 46
2.7.5.13 bfd_symbol_info........... 46
2.7.5.14 bfd_copy_private_symbol_data.................. 46

2.8 Archives........ ... 46
2.8.1 Archive functions 47
2.8.1.1 bfd_get_next_mapent............................. 47
2.8.1.2 bfd_set_archive_head 47
2.8.1.3 bfd_openr_next_archived_file................... 47

2.9 Fileformats 48
2.9.1 File format functions............ 48
2.9.1.1 bfd_check_format................ 48
2.9.1.2 bfd_check_format_matches....................... 48
2.9.1.3 bfd_set_format............. 49
2.9.14 bfd_format_string............. 49

2.10 Relocationso o 49
2.10.1 typedefarelent 49
2.10.1.1 enum complain_overflow......................... 52
2.10.1.2 reloc_howto_type..........c.oouuiiiniinnino... 53
2.10.1.3 The HOWTO MacCTO oottt 55
2.10.1.4 bfd_get_reloc_size................ 55
2.10.1.5 arelent_chain............... ..., 56
2.10.1.6 bfd_check_overflow................cuvenienn .. 56
2.10.1.7 bfd_perform_relocation........................ 56
2.10.1.8 bfd_install_relocation...............cco..... 57
2.10.2 The howto manager.ovuiineeiineenna... 57
2.10.2.1 bfd_reloc_code_typecoiiiiiiiiii.... o7
2.10.2.2 bfd_reloc_type_lookup 98
2.10.2.3 bfd_default_reloc_type_lookup 98
2.10.2.4 bfd_get_reloc_code_name....................... 98
2.10.2.5 bfd_generic_relax_section..................... 98
2.10.2.6 bfd_generic_gc_sections....................... 98
2.10.2.7 bfd_generic_merge_sections.................... 99
2.10.2.8 bfd_generic_get_relocated_section_contents.. 99

211 Core files . ..o 99
2.11.1 Core file functions 99
2.11.1.1 bfd_core_file_failing command 99
2.11.1.2 bfd_core_file_failing signal.................. 99
2.11.1.3 core_file_matches_executable_p.............. 100
2.11.1.4 generic_core_file_matches_executable_p..... 100

212 Targets . ..ot 100
2.12.1 bfd_target. ... 101
2.12.1.1 bfd_set_default_target....................... 110
2.12.1.2 bfd_find_target............. 110
2.12.1.3 bfd_target_list.................. 110

2.12.1.4 bfd_seach_for_target 110

2.13 Architectures ... 110
2.13.1 bfd_architecture i 111
2.13.2 bfd_arch_info......... 118

2.13.2.1 bfd_printable name............................ 119
2.13.2.2 bfd_scan_arch............ 119
2.13.2.3 bfd_arch_list............, 119
2.13.2.4 bfd_arch_get_compatible...................... 119
2.13.2.5 bfd_default_arch_struct...................... 120
2.13.2.6 bfd_set_arch_info............. 120
2.13.2.7 bfd_default_set_arch_mach.................... 120
2.13.2.8 bfd_get_arch........... 120
2.13.2.9 bfd_get_mach........... 120
2.13.2.10 bfd_arch_bits_per_byte...................... 120
2.13.2.11 bfd_arch_bits_per_address................... 120
2.13.2.12 bfd_default_compatible...................... 121
2.13.2.13 bfd_default_scan..............couiiiiuue.... 121
2.13.2.14 bfd_get_arch_info............................ 121
2.13.2.15 bfd_lookup_arch............... 121
2.13.2.16 bfd_printable_arch mach..................... 121
2.13.2.17 bfd_octets_per_byte 121
2.13.2.18 bfd_arch_mach_octets_per_byte.............. 122

2.14 Opening and closing BFDs................................ 122

2.14.1 Functions for opening and closing 122
2.14.1.1 bfd_fopen...........oiiii 122
2.14.1.2 bfd_openr.............iiii 122
2.14.1.3 bfd_fdopenr 122
2.14.1.4 bfd_openstreamr.................iiiiiiiiiai... 123
2.14.1.5 bfd_openr_iovec............. ..., 123
2.14.1.6 bfd_openw...............iiiiiiii 124
2.14.1.7 bfd_close........oiiiii 124
2.14.1.8 bfd_close_all _done............c.uuiiiiuunnan.. 124
2.14.1.9 bfd_create 124
2.14.1.10 bfd_make writable..................c....... 125
2.14.1.11 bfd_make_readable........................... 125
2.14.1.12 bfd_alloc ..ot 125
2.14.1.13 bfd_alloc2 ...t 125
2.14.1.14 bfd_zalloC ...ovie 125
2.14.1.15 bfd_zalloc2 ...ttt 125
2.14.1.16 bfd_calc_gnu_debuglink_crc32............... 126
2.14.1.17 get_debug_link_info 126
2.14.1.18 separate_debug_file_exists.................. 126
2.14.1.19 find_separate_debug_file.................... 126
2.14.1.20 bfd_follow_gnu_debuglink.................... 126
2.14.1.21 bfd_create_gnu_debuglink_section........... 127
2.14.1.22 bfd_fill_in_gnu_debuglink_section.......... 127

2.15 Implementation details 127
2.15.1 Imternal functions.............. i, 127

2.15.1.1 bfd_write_bigendian_4byte_int 127

iv

2.15.1.2 bfd_put_size 128

2.15.1.3 bfd_get_size........ 128
2.15.1.4 bfd_h_put_size............. 129
2.15.1.5 bfd_L1og2. .ot 130

216 Filecaching...........co 131
2.16.1 Caching functions i 131
2.16.1.1 bfd_cache_dinit........... 131
2.16.1.2 bfd_cache_cloSe.........c..ouiiniininennennnn.. 131
2.16.1.3 bfd_cache_close_allcovunen.... 131
2.16.1.4 bfd_open_file............ 131

2.17 Linker Functions i 132
2.17.1 Creating a linker hash table 132
2.17.2 Adding symbols to the hash table..................... 132
2.17.2.1 Differing file formats 133
2.17.2.2 Adding symbols from an object file............... 133
2.17.2.3 Adding symbols from an archive.................. 134
2.17.3 Performing the final link 134
2.17.3.1 Information provided by the linker 135
2.17.3.2 Relocating the section contents................... 135
2.17.3.3 Writing the symbol table 135
2.17.3.4 bfd_link_split_section....................... 136
2.17.3.5 bfd_section_already_linked................... 136

2.18 Hash Tables ... 136
2.18.1 Creating and freeing a hash table..................... 137
2.18.2 Looking up or entering a string 137
2.18.3 Traversing a hash table 137
2.18.4 Deriving a new hash table type....................... 138
2.18.4.1 Define the derived structures..................... 138
2.18.4.2 Write the derived creation routine................ 138
2.18.4.3 Write other derived routines 139

3 BFDbackends.......................... 141
3.1 What to Put Where........ 141
3.2 aoutbackends......... ... 141
3.2.1 Relocations ... 142
3.2.2 Internal entry points.......... 142
3.2.2.1 aout_size_swap_exec_header_in................ 142
3.2.2.2 aout_size_swap_exec_header_out............... 142
3.2.2.3 aout_size_some_aout_object_p................. 143
3.2.2.4 aout_size_mkobject 143
3.2.2.5 aout_size_machine_type........................ 143
3.2.2.6 aout_size_set_arch mach....................... 143
3.2.2.7 aout_size_new_section_hook 144

3.3 coff backends 144
3.3.1 Porting to a new version of coff 144
3.3.2 How the coff backend works 144
3.3.2.1 Filelayout...... ..o 144

3.3.2.2 Bittwiddling 145

3.3.2.3 Symbolreadingcooiiiiiii 145

3.3.2.4 Symbol writing 146
3.3.2.5 coff_symbol_type............ 146
3.3.2.6 bfd_coff_backend_ data......................... 148
3.3.2.7 Writing relocations................. 154
3.3.2.8 Reading linenumbers 154
3.3.2.9 Reading relocations 154

3.4 ELF backends............o 155
3.4.0.1 bfd_elf_find_sectionc....... 155

3.5 mmo backend 155
3.5.1 Filelayout ... 155
3.5.2 Symbol table format L. 157
3.5.3 mmo section Mappingo.veueiiininnn.. 159

Appendix A GNU Free Documentation License
....................................... 161

Chapter 1: Introduction 1

1 Introduction

BFD is a package which allows applications to use the same routines to operate on object
files whatever the object file format. A new object file format can be supported simply by
creating a new BFD back end and adding it to the library.

BFD is split into two parts: the front end, and the back ends (one for each object file
format).

e The front end of BFD provides the interface to the user. It manages memory and
various canonical data structures. The front end also decides which back end to use
and when to call back end routines.

e The back ends provide BFD its view of the real world. Each back end provides a set of

calls which the BFD front end can use to maintain its canonical form. The back ends
also may keep around information for their own use, for greater efficiency.

1.1 History

One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for
interoperability of applications on their COFF and b.out file formats. Cygnus was providing
GNU support for the team, and was contracted to provide the required functionality.

The name came from a conversation David Wallace was having with Richard Stallman
about the library: RMS said that it would be quite hard—David said “BFD”. Stallman was
right, but the name stuck.

At the same time, Ready Systems wanted much the same thing, but for different object file
formats: TEEE-695, Oasys, Srecords, a.out and 68k coff.

BFD was first implemented by members of Cygnus Support; Steve Chamber-
lain (sac@cygnus.com), John Gilmore (gnu@cygnus.com), K. Richard Pixley
(rich@cygnus.com) and David Henkel-Wallace (gumby@cygnus.com).

1.2 How To Use BFD
To use the library, include ‘bfd.h’ and link with ‘1ibbfd.a’.

BFD provides a common interface to the parts of an object file for a calling application.

When an application successfully opens a target file (object, archive, or whatever), a pointer
to an internal structure is returned. This pointer points to a structure called bfd, described
in ‘bfd.h’. Our convention is to call this pointer a BFD, and instances of it within code
abfd. All operations on the target object file are applied as methods to the BFD. The
mapping is defined within bfd.h in a set of macros, all beginning with ‘bfd_’ to reduce
namespace pollution.

For example, this sequence does what you would probably expect: return the number of
sections in an object file attached to a BFD abfd.

#include "bfd.h"

unsigned int number_of_sections (abfd)
bfd *abfd;
{

Chapter 1: Introduction 2

return bfd_count_sections (abfd);

}
The abstraction used within BFD is that an object file has:
e a header,
e a number of sections containing raw data (see Section 2.6 [Sections]|, page 21),
e a set of relocations (see Section 2.10 [Relocations]|, page 49), and

e some symbol information (see Section 2.7 [Symbols|, page 38).

Also, BFDs opened for archives have the additional attribute of an index and contain
subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when
applied to formats such as S-records and IEEE-695.

1.3 What BFD Version 2 Can Do

When an object file is opened, BFD subroutines automatically determine the format of the
input object file. They then build a descriptor in memory with pointers to routines that
will be used to access elements of the object file’s data structures.

As different information from the object files is required, BFD reads from different sections
of the file and processes them. For example, a very common operation for the linker is
processing symbol tables. Each BFD back end provides a routine for converting between
the object file’s representation of symbols and an internal canonical format. When the
linker asks for the symbol table of an object file, it calls through a memory pointer to the
routine from the relevant BFD back end which reads and converts the table into a canonical
form. The linker then operates upon the canonical form. When the link is finished and the
linker writes the output file’s symbol table, another BED back end routine is called to take
the newly created symbol table and convert it into the chosen output format.

1.3.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not
provide identical facilities, and information which can be described in one form has nowhere
to go in another format. One example of this is alignment information in b.out. There is
nowhere in an a.out format file to store alignment information on the contained data, so
when a file is linked from b.out and an a.out image is produced, alignment information
will not propagate to the output file. (The linker will still use the alignment information
internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of
sections, each one with a textual section name. If the target of the link is a format which
does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command language.

Information can be lost during canonicalization. The BFD internal canonical form of the
external formats is not exhaustive; there are structures in input formats for which there is
no direct representation internally. This means that the BFD back ends cannot maintain
all possible data richness through the transformation between external to internal and back
to external formats.

Chapter 1: Introduction 3

This limitation is only a problem when an application reads one format and writes another.
Each BFD back end is responsible for maintaining as much data as possible, and the internal
BFD canonical form has structures which are opaque to the BFD core, and exported only
to the back ends. When a file is read in one format, the canonical form is generated for
BEFD and the application. At the same time, the back end saves away any information
which may otherwise be lost. If the data is then written back in the same format, the back
end routine will be able to use the canonical form provided by the BED core as well as the
information it prepared earlier. Since there is a great deal of commonality between back
ends, there is no information lost when linking or copying big endian COFF to little endian
COFF, or a.out to b.out. When a mixture of formats is linked, the information is only
lost from the files whose format differs from the destination.

1.3.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between
the information provided by the source format, that stored by the canonical format, and
that needed by the destination format. A brief description of the canonical form may help
you understand which kinds of data you can count on preserving across conversions.

files Information stored on a per-file basis includes target machine architecture, par-
ticular implementation format type, a demand pageable bit, and a write pro-
tected bit. Information like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both the demand page-
able bit and the write protected text bit set. The byte order of the target is
stored on a per-file basis, so that big- and little-endian object files may be used
with one another.

sections Each section in the input file contains the name of the section, the section’s
original address in the object file, size and alignment information, various flags,
and pointers into other BFD data structures.

symbols Each symbol contains a pointer to the information for the object file which
originally defined it, its name, its value, and various flag bits. When a BFD
back end reads in a symbol table, it relocates all symbols to make them relative
to the base of the section where they were defined. Doing this ensures that
each symbol points to its containing section. Each symbol also has a varying
amount of hidden private data for the BFD back end. Since the symbol points
to the original file, the private data format for that symbol is accessible. 1d can
operate on a collection of symbols of wildly different formats without problems.

Normal global and simple local symbols are maintained on output, so an output
file (no matter its format) will retain symbols pointing to functions and to
global, static, and common variables. Some symbol information is not worth
retaining; in a.out, type information is stored in the symbol table as long
symbol names. This information would be useless to most COFF debuggers;
the linker has command line switches to allow users to throw it away.

There is one word of type information within the symbol, so if the format
supports symbol type information within symbols (for example, COFF, IEEE,
Oasys) and the type is simple enough to fit within one word (nearly everything
but aggregates), the information will be preserved.

Chapter 1: Introduction 4

relocation level

Each canonical BFD relocation record contains a pointer to the symbol to re-
locate to, the offset of the data to relocate, the section the data is in, and
a pointer to a relocation type descriptor. Relocation is performed by passing
messages through the relocation type descriptor and the symbol pointer. There-
fore, relocations can be performed on output data using a relocation method
that is only available in one of the input formats. For instance, Oasys provides
a byte relocation format. A relocation record requesting this relocation type
would point indirectly to a routine to perform this, so the relocation may be
performed on a byte being written to a 68k COFF file, even though 68k COFF
has no such relocation type.

line numbers

Object formats can contain, for debugging purposes, some form of mapping
between symbols, source line numbers, and addresses in the output file. These
addresses have to be relocated along with the symbol information. Each symbol
with an associated list of line number records points to the first record of the list.
The head of a line number list consists of a pointer to the symbol, which allows
finding out the address of the function whose line number is being described.
The rest of the list is made up of pairs: offsets into the section and line numbers.
Any format which can simply derive this information can pass it successfully
between formats (COFF, IEEE and Oasys).

Chapter 2: BFD Front End 5)

2 BFD Front End

2.1 typedef bfd

A BFD has type bfd; objects of this type are the cornerstone of any application using BED.
Using BFD consists of making references though the BFD and to data in the BFD.

Here is the structure that defines the type bfd. It contains the major data about the file
and pointers to the rest of the data.

struct bfd

{

/* A unique identifier of the BFD x*/
unsigned int id;

/* The filename the application opened the BFD with. */
const char *filename;

/* A pointer to the target jump table. */
const struct bfd_target *xvec;

/* The IOSTREAM, and corresponding IO vector that provide access
to the file backing the BFD. */

void *iostream;

const struct bfd_iovec *iovec;

/* The caching routines use these to maintain a
least-recently-used list of BFDs. */
struct bfd *lru_prev, *lru_next;

/* When a file is closed by the caching routines, BFD retains
state information on the file here... %/
ufile_ptr where;

/* File modified time, if mtime_set is TRUE. x*/
long mtime;

/* Reserved for an unimplemented file locking extension. */
int ifd;

/* The format which belongs to the BFD. (object, core, etc.) */
bfd_format format;

/* The direction with which the BFD was opened. */
enum bfd_direction

{

no_direction = O,

Chapter 2: BFD Front End 6

read_direction = 1,

write_direction = 2,

both_direction = 3
}

direction;

/* Format_specific flags. x*/
flagword flags;

/* Values that may appear in the flags field of a BFD. These also
appear in the object_flags field of the bfd_target structure, where
they indicate the set of flags used by that backend (not all flags
are meaningful for all object file formats) (FIXME: at the moment,
the object_flags values have mostly just been copied from backend
to another, and are not necessarily correct). */

#define BFD_NO_FLAGS 0x00

/* BFD contains relocation entries. x*/
#define HAS_RELOC 0x01

/* BFD is directly executable. */
#define EXEC_P 0x02

/* BFD has line number information (basically used for F_LNNO in a
COFF header). =*/
#define HAS_LINENO 0x04

/* BFD has debugging information. */
#define HAS_DEBUG 0x08

/* BFD has symbols. */
#define HAS_SYMS 0x10

/* BFD has local symbols (basically used for F_LSYMS in a COFF
header). x/
#define HAS_LOCALS 0x20

/* BFD is a dynamic object. */
#define DYNAMIC 0x40

/* Text section is write protected (if D_PAGED is not set, this is
like an a.out NMAGIC file) (the linker sets this by default, but
clears it for -r or -N). */

#define WP_TEXT 0x80

/* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the

Chapter 2: BFD Front End 7

linker sets this by default, but clears it for -r or -n or -N). */
#define D_PAGED 0x100

/* BFD is relaxable (this means that bfd_relax_section may be able to
do something) (sometimes bfd_relax_section can do something even if
this is not set). */

#define BFD_IS_RELAXABLE 0x200

/* This may be set before writing out a BFD to request using a
traditional format. For example, this is used to request that when
writing out an a.out object the symbols not be hashed to eliminate
duplicates. */

#define BFD_TRADITIONAL_FORMAT 0x400

/* This flag indicates that the BFD contents are actually cached
in memory. If this is set, iostream points to a bfd_in_memory
struct. */

#define BFD_IN_MEMORY 0x800

/* The sections in this BFD specify a memory page. */
#define HAS_LOAD_PAGE 0x1000

/* This BFD has been created by the linker and doesn’t correspond
to any input file. */
#define BFD_LINKER_CREATED 0x2000

/* Currently my_archive is tested before adding origin to
anything. I believe that this can become always an add of
origin, with origin set to O for non archive files. */

ufile_ptr origin;

/* The origin in the archive of the proxy entry. This will
normally be the same as origin, except for thin archives,
when it will contain the current offset of the proxy in the
thin archive rather than the offset of the bfd in its actual
container. */

ufile_ptr proxy_origin;

/* A hash table for section names. */
struct bfd_hash_table section_htab;

/* Pointer to linked list of sections. */
struct bfd_section *sections;

/* The last section on the section list. x*/
struct bfd_section *section_last;

Chapter 2: BFD Front End 8

/* The number of sections. */
unsigned int section_count;

/* Stuff only useful for object files:
The start address. */
bfd_vma start_address;

/* Used for input and output. */
unsigned int symcount;

/* Symbol table for output BFD (with symcount entries).
Also used by the linker to cache input BFD symbols. */
struct bfd_symbol **outsymbols;

/* Used for slurped dynamic symbol tables. */
unsigned int dynsymcount;

/* Pointer to structure which contains architecture information. */
const struct bfd_arch_info *arch_info;

/* Stuff only useful for archives. x*/
void *arelt_data;

struct bfd *my_archive; /* The containing archive BFD. */
struct bfd *archive_next; /* The next BFD in the archive. x*/
struct bfd *archive_head; /* The first BFD in the archive. */

struct bfd *nested_archives; /* List of nested archive in a flattened
thin archive. %/

/* A chain of BFD structures involved in a link. x*/
struct bfd *link_next;

/* A field used by _bfd_generic_link_add_archive_symbols. This will
be used only for archive elements. */
int archive_pass;

/* Used by the back end to hold private data. */
union
{
struct aout_data_struct *aout_data;
struct artdata *aout_ar_data;
struct _oasys_data *oasys_obj_data;
struct _oasys_ar_data *oasys_ar_data;
struct coff_tdata *coff_obj_data;
struct pe_tdata *pe_obj_data;
struct xcoff_tdata *xcoff_obj_data;
struct ecoff_tdata *ecoff_obj_data;
struct ieee_data_struct *ieee_data;

Chapter 2: BFD Front End 9

struct ieee_ar_data_struct *ieee_ar_data;
struct srec_data_struct *srec_data;
struct ihex_data_struct *ihex_data;
struct tekhex_data_struct *tekhex_data;
struct elf_obj_tdata *elf_obj_data;
struct nlm_obj_tdata *nlm_obj_data;
struct bout_data_struct *bout_data;
struct mmo_data_struct *mmo_data;
struct sun_core_struct *sun_core_data;
struct scob_core_struct *scob5_core_data;
struct trad_core_struct *trad_core_data;
struct som_data_struct *som_data;
struct hpux_core_struct *hpux_core_data;
struct hppabsd_core_struct *hppabsd_core_data;
struct sgi_core_struct *sgi_core_data;
struct lynx_core_struct *lynx_core_data;
struct osf_core_struct *osf_core_data;
struct cisco_core_struct *cisco_core_data;
struct versados_data_struct *versados_data;
struct netbsd_core_struct *netbsd_core_data;
struct mach_o_data_struct *mach_o_data;
struct mach_o_fat_data_struct *mach_o_fat_data;
struct bfd_pef_data_struct *pef_data;
struct bfd_pef_xlib_data_struct *pef_xlib_data;
struct bfd_sym_data_struct *sym_data;
void *any;
}
tdata;

/* Used by the application to hold private data. */
void *usrdata;

/* Where all the allocated stuff under this BFD goes. This is a
struct objalloc *, but we use void * to avoid requiring the inclusion]]
of objalloc.h. */

void *memory;

/* Is the file descriptor being cached? That is, can it be closed as
needed, and re-opened when accessed later? */
unsigned int cacheable : 1;

/* Marks whether there was a default target specified when the
BFD was opened. This is used to select which matching algorithm
to use to choose the back end. */

unsigned int target_defaulted : 1;

/* ... and here: (‘‘once’’ means at least once). x*/

Chapter

};

2: BFD Front End 10

unsigned int opened_once : 1;

/* Set if we have a locally maintained mtime value, rather than
getting it from the file each time. */
unsigned int mtime_set : 1;

/* Flag set if symbols from this BFD should not be exported. */
unsigned int no_export : 1;

/* Remember when output has begun, to stop strange things
from happening. */
unsigned int output_has_begun : 1;

/* Have archive map. */
unsigned int has_armap : 1;

/* Set if this is a thin archive. %/
unsigned int is_thin_archive : 1;

2.2 Error reporting

Most BFD functions return nonzero on success (check their individual documentation for
precise semantics). On an error, they call bfd_set_error to set an error condition that
callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then
check errno.

The easiest way to report a BFD error to the user is to use bfd_perror.

2.2.1 Type bfd_error_type

The values returned by bfd_get_error are defined by the enumerated type bfd_error_

type.

typedef enum bfd_error

{

bfd_error_no_error = 0,
bfd_error_system_call,
bfd_error_invalid_target,
bfd_error_wrong_format,
bfd_error_wrong_object_format,
bfd_error_invalid_operation,
bfd_error_no_memory,
bfd_error_no_symbols,
bfd_error_no_armap,
bfd_error_no_more_archived_files,
bfd_error_malformed_archive,
bfd_error_file_not_recognized,

Chapter 2: BFD Front End 11

bfd_error_file_ambiguously_recognized,
bfd_error_no_contents,
bfd_error_nonrepresentable_section,
bfd_error_no_debug_section,
bfd_error_bad_value,
bfd_error_file_truncated,
bfd_error_file_too_big,
bfd_error_on_input,
bfd_error_invalid_error_code

b

bfd_error_type;

2.2.1.1 bfd_get_error
Synopsis
bfd_error_type bfd_get_error (void);

Description
Return the current BFD error condition.

2.2.1.2 bfd_set_error
Synopsis
void bfd_set_error (bfd_error_type error_tag, ...);

Description

Set the BFD error condition to be error_tag. If error_tag is bfd_error_on_input, then
this function takes two more parameters, the input bfd where the error occurred, and
the bfd_error_type error.

2.2.1.3 bfd_errmsg
Synopsis
const char *bfd_errmsg (bfd_error_type error_tag);

Description
Return a string describing the error error_tag, or the system error if error_tag is bfd_error_
system_call.

2.2.1.4 bfd_perror
Synopsis
void bfd_perror (const char *message);

Description

Print to the standard error stream a string describing the last BFD error that occurred, or
the last system error if the last BFD error was a system call failure. If message is non-NULL
and non-empty, the error string printed is preceded by message, a colon, and a space. It is
followed by a newline.

Chapter 2: BFD Front End 12

2.2.2 BFD error handler

Some BFD functions want to print messages describing the problem. They call a BFD error
handler function. This function may be overridden by the program.

The BFD error handler acts like printf.

typedef void (xbfd_error_handler_type) (const char *, ...);

2.2.2.1 bfd_set_error_handler
Synopsis
bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);

Description
Set the BFD error handler function. Returns the previous function.

2.2.2.2 bfd_set_error_program_name
Synopsis
void bfd_set_error_program_name (const char *);

Description

Set the program name to use when printing a BFD error. This is printed before the error
message followed by a colon and space. The string must not be changed after it is passed
to this function.

2.2.2.3 bfd_get_error_handler
Synopsis
bfd_error_handler_type bfd_get_error_handler (void);

Description
Return the BFD error handler function.

2.3 Miscellaneous

2.3.1 Miscellaneous functions

2.3.1.1 bfd_get_reloc_upper_bound
Synopsis
long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);

Description
Return the number of bytes required to store the relocation information associated with
section sect attached to bfd abfd. If an error occurs, return -1.

2.3.1.2 bfd_canonicalize_reloc
Synopsis

long bfd_canonicalize_reloc
(bfd *abfd, asection *sec, arelent **loc, asymbol **syms);

Chapter 2: BFD Front End 13

Description

Call the back end associated with the open BFD abfd and translate the external form of the
relocation information attached to sec into the internal canonical form. Place the table into
memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_
bound. Returns the number of relocs, or -1 on error.

The syms table is also needed for horrible internal magic reasons.

2.3.1.3 bfd_set_reloc
Synopsis

void bfd_set_reloc
(bfd *abfd, asection *sec, arelent **rel, unsigned int count);

Description
Set the relocation pointer and count within section sec to the values rel and count. The
argument abfd is ignored.

2.3.1.4 bfd_set_file_flags
Synopsis
bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);

Description
Set the flag word in the BFD abfd to the value flags.

Possible errors are:
e bfd_error_wrong_format - The target bfd was not of object format.
e bfd_error_invalid_operation - The target bfd was open for reading.

e bfd_error_invalid_operation - The flag word contained a bit which was not appli-
cable to the type of file. E.g., an attempt was made to set the D_PAGED bit on a BFD
format which does not support demand paging.

2.3.1.5 bfd_get_arch_size
Synopsis
int bfd_get_arch_size (bfd *abfd);

Description
Returns the architecture address size, in bits, as determined by the object file’s format. For
ELF, this information is included in the header.

Returns
Returns the arch size in bits if known, -1 otherwise.

2.3.1.6 bfd_get_sign_extend_vma
Synopsis
int bfd_get_sign_extend_vma (bfd *abfd);

Description
Indicates if the target architecture "naturally" sign extends an address. Some architectures
implicitly sign extend address values when they are converted to types larger than the size

Chapter 2: BFD Front End 14

of an address. For instance, bfd_get_start_address() will return an address sign extended
to fill a bfd_vma when this is the case.

Returns
Returns 1 if the target architecture is known to sign extend addresses, 0 if the target
architecture is known to not sign extend addresses, and -1 otherwise.

2.3.1.7 bfd_set_start_address
Synopsis
bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);

Description
Make vma the entry point of output BFD abfd.

Returns
Returns TRUE on success, FALSE otherwise.

2.3.1.8 bfd_get_gp_size
Synopsis
unsigned int bfd_get_gp_size (bfd *abfd);

Description
Return the maximum size of objects to be optimized using the GP register under MIPS
ECOFF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.9 bfd_set_gp_size
Synopsis
void bfd_set_gp_size (bfd *abfd, unsigned int i);

Description
Set the maximum size of objects to be optimized using the GP register under ECOFF or
MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.10 bfd_scan_vma
Synopsis
bfd_vma bfd_scan_vma (const char *string, const char **end, int base);

Description

Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return
that integer. (Though without as many bells and whistles as strtoul.) The expression is
assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion.
A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is
found, otherwise in octal if a leading zero is found, otherwise in decimal.

If the value would overflow, the maximum bfd_vma value is returned.

2.3.1.11 bfd_copy_private_header_data
Synopsis
bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);

Description
Copy private BED header information from the BFD ibfd to the the BED obfd. This copies

Chapter 2: BFD Front End 15

information that may require sections to exist, but does not require symbol tables. Return
true on success, false on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_copy_private_header_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_header_data, \
(ibfd, obfd))

2.3.1.12 bfd_copy_private_bfd_data
Synopsis
bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);

Description
Copy private BFD information from the BFD ibfd to the the BFD obfd. Return TRUE on
success, FALSE on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_copy_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
(ibfd, obfd))

2.3.1.13 bfd_merge_private_bfd_data
Synopsis
bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);

Description
Merge private BED information from the BFD ibfd to the the output file BFD obfd when
linking. Return TRUE on success, FALSE on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_merge_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
(ibfd, obfd))

2.3.1.14 bfd_set_private_flags
Synopsis
bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);

Description
Set private BFD flag information in the BFD abfd. Return TRUE on success, FALSE on error.
Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_set_private_flags(abfd, flags) \
BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))

2.3.1.15 Other functions

Description
The following functions exist but have not yet been documented.

Chapter 2: BFD Front End 16

#define bfd_sizeof_headers(abfd, info) \
BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))

#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
BFD_SEND (abfd, _bfd_find_nearest_line, \
(abfd, sec, syms, off, file, func, line))

#define bfd_find_line(abfd, syms, sym, file, line) \
BFD_SEND (abfd, _bfd_find_line, \
(abfd, syms, sym, file, line))

#define bfd_find_inliner_info(abfd, file, func, line) \
BFD_SEND (abfd, _bfd_find_inliner_info, \
(abfd, file, func, line))

#define bfd_debug_info_start(abfd) \
BFD_SEND (abfd, _bfd_debug_info_start, (abfd))

#define bfd_debug_info_end(abfd) \
BFD_SEND (abfd, _bfd_debug_info_end, (abfd))

#define bfd_debug_info_accumulate(abfd, section) \
BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))

#define bfd_stat_arch_elt(abfd, stat) \
BFD_SEND (abfd, _bfd_stat_arch_elt, (abfd, stat))

#define bfd_update_armap_timestamp(abfd) \
BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))

#define bfd_set_arch_mach(abfd, arch, mach)\
BFD_SEND (abfd, _bfd_set_arch_mach, (abfd, arch, mach))

#define bfd_relax_section(abfd, section, link_info, again) \
BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))]]

#define bfd_gc_sections(abfd, link_info) \
BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))

#define bfd_merge_sections(abfd, link_info) \
BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))

#define bfd_is_group_section(abfd, sec) \
BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))

#define bfd_discard_group(abfd, sec) \
BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))

Chapter 2: BFD Front End 17

#define bfd_link_hash_table_create(abfd) \
BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))

#define bfd_link_hash_table_free(abfd, hash) \
BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))

#define bfd_link_add_symbols(abfd, info) \
BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))

#define bfd_link_just_syms(abfd, sec, info) \
BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))

#define bfd_final link(abfd, info) \
BFD_SEND (abfd, _bfd_final_ link, (abfd, info))

#define bfd_free_cached_info(abfd) \
BFD_SEND (abfd, _bfd_free_cached_info, (abfd))

#define bfd_get_dynamic_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))

#define bfd_print_private_bfd_data(abfd, file)\
BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))

#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))]]

#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \Jj
BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
dyncount, dynsyms, ret))]]

#define bfd_get_dynamic_reloc_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))

#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))|]

extern bfd_byte *bfd_get_relocated_section_contents
(bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
bfd_boolean, asymbol *x*);

2.3.1.16 bfd_alt_mach_code
Synopsis

bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);

Chapter 2: BFD Front End 18

Description
When more than one machine code number is available for the same machine type, this
function can be used to switch between the preferred one (alternative == 0) and any

others. Currently, only ELF supports this feature, with up to two alternate machine codes.

struct bfd_preserve
{
void *marker;
void *tdata;
flagword flags;
const struct bfd_arch_info *arch_info;
struct bfd_section *sections;
struct bfd_section *section_last;
unsigned int section_count;
struct bfd_hash_table section_htab;
};

2.3.1.17 bfd_preserve_save
Synopsis
bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);

Description

When testing an object for compatibility with a particular target back-end, the back-end
object_p function needs to set up certain fields in the bfd on successfully recognizing the
object. This typically happens in a piecemeal fashion, with failures possible at many points.
On failure, the bfd is supposed to be restored to its initial state, which is virtually impossible.
However, restoring a subset of the bfd state works in practice. This function stores the subset
and reinitializes the bfd.

2.3.1.18 bfd_preserve_restore
Synopsis
void bfd_preserve_restore (bfd *, struct bfd_preserve *);

Description
This function restores bfd state saved by bfd_preserve_save. If MARKER is non-NULL in
struct bfd_preserve then that block and all subsequently bfd_alloc’d memory is freed.

2.3.1.19 bfd_preserve_finish
Synopsis
void bfd_preserve_finish (bfd *, struct bfd_preserve x);

Description
This function should be called when the bfd state saved by bfd_preserve_save is no longer
needed. ie. when the back-end object_p function returns with success.

2.3.1.20 bfd_emul_get_maxpagesize
Synopsis

Chapter 2: BFD Front End 19

bfd_vma bfd_emul_get_maxpagesize (const char *);

Description
Returns the maximum page size, in bytes, as determined by emulation.

Returns
Returns the maximum page size in bytes for ELF, abort otherwise.

2.3.1.21 bfd_emul_set_maxpagesize
Synopsis
void bfd_emul_set_maxpagesize (const char *, bfd_vma);

Description
For ELF, set the maximum page size for the emulation. It is a no-op for other formats.

2.3.1.22 bfd_emul_get_commonpagesize
Synopsis
bfd_vma bfd_emul_get_commonpagesize (const char *);

Description
Returns the common page size, in bytes, as determined by emulation.

Returns
Returns the common page size in bytes for ELF, abort otherwise.

2.3.1.23 bfd_emul_set_commonpagesize
Synopsis
void bfd_emul_set_commonpagesize (const char *, bfd_vma);

Description
For ELF, set the common page size for the emulation. It is a no-op for other formats.

2.3.1.24 bfd_demangle
Synopsis
char *bfd_demangle (bfd *, const char *, int);

Description

Wrapper around cplus_demangle. Strips leading underscores and other such chars that
would otherwise confuse the demangler. If passed a g++ v3 ABI mangled name, returns a
buffer allocated with malloc holding the demangled name. Returns NULL otherwise and
on memory alloc failure.

2.3.1.25 struct bfd_iovec

Description

The struct bfd_iovec contains the internal file I/O class. Each BFD has an instance of
this class and all file I/O is routed through it (it is assumed that the instance implements
all methods listed below).

struct bfd_iovec

{

/* To avoid problems with macros, a "b" rather than "f"

Chapter 2: BFD Front End 20

prefix is prepended to each method name. */

/* Attempt to read/write NBYTES on ABFD’s IOSTREAM storing/fetching
bytes starting at PTR. Return the number of bytes actually
transfered (a read past end-of-file returns less than NBYTES),
or -1 (setting bfd_error) if an error occurs. */

file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);

file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,

file_ptr nbytes);

/* Return the current IOSTREAM file offset, or -1 (setting bfd_error
if an error occurs. */

file_ptr (*btell) (struct bfd *abfd);

/* For the following, on successful completion a value of O is returned.|]
Otherwise, a value of -1 is returned (and bfd_error is set). */

int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);

int (*bclose) (struct bfd *abfd);

int (*bflush) (struct bfd *abfd);

int (*bstat) (struct bfd *abfd, struct stat *sb);

3
2.3.1.26 bfd_get_mtime
Synopsis

long bfd_get_mtime (bfd *abfd);
Description

Return the file modification time (as read from the file system, or from the archive header
for archive members).

2.3.1.27 bfd_get_size
Synopsis
file_ptr bfd_get_size (bfd *abfd);

Description
Return the file size (as read from file system) for the file associated with BFD abfd.

The initial motivation for, and use of, this routine is not so we can get the exact size of the
object the BFD applies to, since that might not be generally possible (archive members for
example). It would be ideal if someone could eventually modify it so that such results were
guaranteed.

Instead, we want to ask questions like "is this NNN byte sized object I'm about to try read
from file offset YYY reasonable?" As as example of where we might do this, some object
formats use string tables for which the first sizeof (long) bytes of the table contain the
size of the table itself, including the size bytes. If an application tries to read what it
thinks is one of these string tables, without some way to validate the size, and for some
reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the
only clue is likely to be a read error when it tries to read the table, or a "virtual memory
exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte
table it is about to read. This function at least allows us to answer the question, "is the
size reasonable?".

Chapter 2: BFD Front End 21

2.4 Memory Usage

BEFD keeps all of its internal structures in obstacks. There is one obstack per open BFD
file, into which the current state is stored. When a BFD is closed, the obstack is deleted,
and so everything which has been allocated by BFD for the closing file is thrown away.
BFD does not free anything created by an application, but pointers into bfd structures
become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_
canonicalize_symtab is still around, since it has been allocated by the application, but
the data that it pointed to are lost.

The general rule is to not close a BED until all operations dependent upon data from the
BFD have been completed, or all the data from within the file has been copied. To help
with the management of memory, there is a function (bfd_alloc_size) which returns the
number of bytes in obstacks associated with the supplied BFD. This could be used to select
the greediest open BFD, close it to reclaim the memory, perform some operation and reopen
the BFD again, to get a fresh copy of the data structures.

2.5 Initialization

2.5.1 Initialization functions

These are the functions that handle initializing a BFD.

2.5.1.1 bfd_init
Synopsis
void bfd_init (void);

Description
This routine must be called before any other BFD function to initialize magical internal
data structures.

2.6 Sections

The raw data contained within a BFD is maintained through the section abstraction. A
single BFD may have any number of sections. It keeps hold of them by pointing to the first;
each one points to the next in the list.

Sections are supported in BFD in section.c.

2.6.1 Section input

When a BFD is opened for reading, the section structures are created and attached to the
BFD.

Each section has a name which describes the section in the outside world—for example,
a.out would contain at least three sections, called .text, .data and .bss.

Names need not be unique; for example a COFF file may have several sections named .data.

Sometimes a BFD will contain more than the “natural” number of sections. A back end
may attach other sections containing constructor data, or an application may add a section
(using bfd_make_section) to the sections attached to an already open BFD. For example,
the linker creates an extra section COMMON for each input file’s BFD to hold information
about common storage.

Chapter 2: BFD Front End 22

The raw data is not necessarily read in when the section descriptor is created. Some targets
may leave the data in place until a bfd_get_section_contents call is made. Other back
ends may read in all the data at once. For example, an S-record file has to be read once to
determine the size of the data. An IEEE-695 file doesn’t contain raw data in sections, but
data and relocation expressions intermixed, so the data area has to be parsed to get out
the data and relocations.

2.6.2 Section output

To write a new object style BFD, the various sections to be written have to be created.
They are attached to the BFD in the same way as input sections; data is written to the
sections using bfd_set_section_contents.

Any program that creates or combines sections (e.g., the assembler and linker) must use the
asection fields output_section and output_offset to indicate the file sections to which
each section must be written. (If the section is being created from scratch, output_section
should probably point to the section itself and output_offset should probably be zero.)

The data to be written comes from input sections attached (via output_section pointers)
to the output sections. The output section structure can be considered a filter for the input
section: the output section determines the vma of the output data and the name, but the
input section determines the offset into the output section of the data to be written.

E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A"
at offset 0x0 (i.e., at via 0x100) and "B" at offset 0x20 (i.e., at vima 0x120) the asection
structures would look like:

section name "A"

output_offset 0x00

size 0x20

output_section --————----- > section name "g"

| vma 0x100

section name "B" | size 0x123

output_offset 0x20 [

size 0x103 |

output_section ----—--- |

2.6.3 Link orders

The data within a section is stored in a link_order. These are much like the fixups in gas.
The link_order abstraction allows a section to grow and shrink within itself.

A link_order knows how big it is, and which is the next link_order and where the raw data
for it is; it also points to a list of relocations which apply to it.

The link_order is used by the linker to perform relaxing on final code. The compiler creates
code which is as big as necessary to make it work without relaxing, and the user can select
whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the
relocations to see if any are attached to data which can be shrunk, if so it does it on a
link_order by link_order basis.

2.6.4 typedef asection

Here is the section structure:

Chapter 2: BFD Front End 23

typedef struct bfd_section

{

/* The name of the section; the name isn’t a copy, the pointer is
the same as that passed to bfd_make_section. */
const char *name;

/* A unique sequence number. */
int id;

/* Which section in the bfd; 0..n-1 as sections are created in a bfd. */H
int index;

/* The next section in the list belonging to the BFD, or NULL. x*/
struct bfd_section *next;

/* The previous section in the list belonging to the BFD, or NULL. */
struct bfd_section *prev;

/*