Sourcery G++ Lite
ARM uClinux
Sourcery G++ Lite 2009gq1-163
Getting Started

((ODESOURCERY

Sourcery G++ Lite: ARM uClinux: Sourcery G++ Lite 2009q1-
163: Getting Started

CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents

P ACE .t iv
1. INteNdEd AUIENCE .. .oeviieeeie e et v
2. OFQANIZALION ...ttt et Y
3. Typographical CONVENTIONScccuuuiiiiiiiiei i Y
1. SOUICEry Gt LiIte LICENSES ...ttt ettt et 1
1.1. Licenses for Sourcery G++ Lite COMPONENESccovuniiiiiiiiiiiiieeiei e 2
1.2. Sourcery G++ Software License AQreementuvvviriiiieiiiiieeeiieeeeie e 2
2. S0Urcery G+ SUDSCIIPLIONScveiiiiiieii et 7
2.1. About Sourcery G+ SUBSCIIPLIONSvuuiiiiiiiieiii e 8
2.2. Accessing your Sourcery G++ Subscription ACCOUNTcc.uuvivviiiiiineiiiineeeiiinen, 9
3. Sourcery G++ Lite for ARM UCTINUXuuiiiiiiiiiiii e 10
3.1, Library Configurationsoeeeiiieeiiie e 11
3.2. Using Sourcery G++ Lite for ARM UCHINUXc.ouiiiiiiiniiiiie e 12
3.3. Sourcery G++ Lite Release NOTESoviiiviiiiiiiiicci e 15
4. Installation and CoNfIQUIALIONiiiiiiiiiiiii e 30
AL TEIMINOIOGY ...t 31
4.2. SYStEM REQUITEIMENTSiiiii et 31
4.3. Downloading an INStalleroooiiiiiii e 32
4.4, Installing SOUICErY G+ LIteiiiiiiiiii e 32
4.5. Installing Sourcery G++ Lite UPatesovviviiiiiiiiiiieeiii e 33
4.6. Uninstalling SOUrcery G LItccouuuiiiiiiieii e 33
4.7. Setting up the ENVIFONMENTutiiiii e 34
5. Using Sourcery G++ from the Command LiNecooviiiiiiiiiiiii e 37
5.1. Building an ApPlICAIONccouuuiiiii e 38
5.2. Running Applications on the Target SYStemocovvuiiiiiiiiiniiiii e 38
5.3. Running Applications from GDBcc.iiiiiiiiiiiii e 39
6. Sourcery G+ Debug SPIIte .. .cceeii i 40
6.1. Probing for DebUQG DEVICESuuiiiiiiieeiii e 41
6.2. Invoking Sourcery G++ Debug SPriteoviiiiiiiiiiiii e 41
6.3. Sourcery G++ Debug Sprite OptioNSuiiiiiiiiiiiiie e 42
6.4. Remote Debug INterface DEVICESovvviuiiiiiiiee e 43
6.5. ACtel FIASNPIO DEVICES .. .ceivtieiiiit ettt e 43
6.6. Debugging @ ReEMOLe BOAIduiiiiiiiiiiiii e 44
6.7. Supported Board FilEScoouuiiiiii i 44
6.8. BOArd File SYNTAX ...coovtiiiiii e e 44
7. Next Steps With SOUICEIY G .ooviiiiiiii e 48
7.1. Sourcery G++ KNOWIedge BaSeuuiiiiiiiiiiiiiii e 49
7.2. Manuals for GNU Toolchain COMPONENTSuuuiiiiiiieiiiiiiee e 49

Preface

This preface introduces Getting Started With Sourcery G++ Lite. It explains the structure
of this guide and lists other sources of information that relate to Sourcery G++ Lite.

Preface

1. Intended Audience

This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization

This document is organized into the following chapters and appendices:

Chapter 1, Sourcery G++ Lite Li-
censes

Chapter 2, Sourcery G++ Subscrip-
tions

Chapter 3, Sourcery G++ Litefor
ARM uClinux

Chapter 4, Ingtallation and Configur-
ation

Chapter 5, Using Sourcery G++
from the Command Line

Chapter 6, Sourcery G++ Debug
Sorite

Chapter 7, Next Seps with Sourcery
G++

This chapter provides information about the software licenses
that apply to Sourcery G++ Lite. Read this chapter to under-
stand your legal rights and obligations as a user of Sourcery
G++ Lite.

This chapter provides information about Sourcery G++ sub-
scriptions. CodeSourcery customers with Sourcery G++ sub-
scriptions receive comprehensive support for Sourcery G++.
Read this chapter to find out how to obtain and use a Sourcery
G++ subscription.

This chapter provides information about this release of
Sourcery G++ Lite including any special installation instruc-
tions, recent improvements, or other similar information. You
should read this chapter before building applications with
Sourcery G++ Lite.

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite is provided for debug-
ging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and
boards supported by the Sprite for ARM uClinux.

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components.

3. Typographical Conventions

The following typographical conventions are used in this guide:

> command arg ...

A command, typed by the user, and its output. The “>" character is the

command prompt.

Preface

command

literal

pl acehol der

The name of a program, when used in a sentence, rather than in literal
input or output.

Text provided to or received from a computer program.

Text that should be replaced with an appropriate value when typing a
command.

At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

Vi

Chapter 1
Sourcery G++ Lite Licenses

Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary. This chapter
explains what licenses apply to your use of Sourcery G++ Lite. You should read this chapter
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

Sourcery G++ Lite Licenses

1.1. Licenses for Sourcery G++ Lite Compon-
ents

The table below lists the major components of Sourcery G++ Lite for ARM uClinux and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

Component License

GNU Binary Utilities GNU General Public License 3.0 *

GNU Compiler Collection GNU General Public License 3.0 2

GNU Debugger GNU General Public License 3.0 °
uClibc C Library GNU Lesser General Public License 2.1 *
Linux Kernel GNU General Public License 2.0 °
ELF-to-FLT Conversion Utility GNU General Public License 2.0 ©
Sourcery G++ Debug Sprite for ARM |CodeSourcery License

GNU Make GNU General Public License 2.0 /

GNU Core Utilities GNU General Public License 2.0 8

The CodeSourcery License is available in Section 1.2, “Sourcery G++ Software License Agreement”.
Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

1.2. Sourcery G++™ Software License Agree-
ment

1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and
CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

Lhitp:/Avww.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/Igpl-2.1.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
6 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
7 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
8 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Sourcery G++ Lite Licenses

Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license to install and use the CodeSourcery Proprietary Components of the
Software, transmit the CodeSourcery Proprietary Components over an internal computer network,
and/or copy the CodeSourcery Proprietary Components for Your internal use only.

Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party; or (iii) reverse engineer, decompile,
or disassemble the CodeSourcery Proprietary Components of the Software, except to the extent
this restriction is expressly prohibited by applicable law.

“Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Sarted Guide
provides an overview of which license applies to different components. Definitive licensing
information for each “free software” or “open source” component is available in the relevant
source file.

CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™ the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
—--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to

Sourcery G++ Lite Licenses

10.

11.

12.

13.

14.

any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

Warranty Disclaimer; Limitation of Liability. = CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-1S” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TOYOU ORANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries

Sourcery G++ Lite Licenses

15.

16.

17.

18.

19.

20.

21.

other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

Licensee Outside The U.S. IfYou are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without

Sourcery G++ Lite Licenses

22.

their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

Chapter 2
Sourcery G++ Subscriptions

CodeSourcery provides support contracts for Sourcery G++. This chapter describes these
contracts and explains how CodeSourcery customers can access their support accounts.

Sourcery G++ Subscriptions

2.1. About Sourcery G++ Subscriptions

CodeSourcery offers Sourcery G++ subscriptions. Professional Edition subscriptions provide unlimited
support, with no per-incident fees. CodeSourcery's support covers questions about installing and
using Sourcery G++, the C and C++ programming languages, and all other topics relating to Sourcery
G++. CodeSourcery provides updated versions of Sourcery G++ to resolve critical problems. Personal
Edition subscriptions do not include support, but do include free upgrades as long as the subscription
remains active.

CodeSourcery's support is provided by the same engineers who build Sourcery G++. A Sourcery
G++ subscription is like having a team of compiler engineers and programming language experts
available as consultants!

Subscription editions of Sourcery G++ also include many additional features not included in the free
Lite editions:

» Sourcery G++ IDE. The Sourcery G++ IDE, based on Eclipse, provides a fully visual envir-
onment for developing applications, including an automated project builder, syntax-highlighting
editor, and a graphical debugging interface. The debugger provides features especially useful to
embedded systems programmers, including the ability to step through code at both the source and
assembly level, view registers, and examine stack traces. CodeSourcery's enhancements to Eclipse
include improved support for hardware debugging via JTAG or ICE units and complete integration
with the rest of Sourcery G++.

» Debug Sprites. Sourcery G++ Debug Sprites provide hardware debugging support using JTAG
and ICE devices. On some systems, Sourcery G++ Sprites can automatically program flash memory
and display control registers. And the board initialization performed by each Sprite can be custom-
ized with simple XML-based configuration files to insert delays and write to particular memory
addresses. Debug Sprites included in Lite editions of Sourcery G++ include only a subset of the
functionality of the Sprites in the subscription editions.

e QEMU Instruction Set Simulator. The QEMU instruction set simulator can be used to run
— and debug — programs even without target hardware. Most bare-metal configurations of
Sourcery G++ include QEMU and linker scripts targeting the simulator. Configurations of Sourcery
G++ for GNU/Linux targets include a user-space QEMU emulator that runs on Linux hosts.

» Sysroot Utilities. Subscription editions of Sourcery G++ include a set of sysroot utilities for
GNU/Linux targets. These utilities simplify use of the Sourcery G++ dynamic linker and shared
libraries on the target and also support remote debugging with gdbserver.

» CS3. CS3 provides a uniform, cross-platform approach to board initialization and interrupt
handling on ARM EABI, ColdFire ELF, fido ELF, and Stellaris EABI platforms.

e GNU/Linux Prelinker. For select GNU/Linux target systems, Sourcery G++ includes the
GNU/Linux prelinker. The prelinker is a postprocessor for GNU/Linux applications which can
dramatically reduce application launch time. CodeSourcery has modified the prelinker to operate
on non-GNU/Linux host systems, including Microsoft Windows.

e Library Reduction Utility. Sourcery G++ also includes a Library Reduction Utility for
GNU/Linux targets. This utility allows the GNU C Library to be relinked to include only those
functions used by a given collection of binaries.

» Additional Libraries. For some platforms, additional run-time libraries optimized for particular
CPUs are available. Pre-built binary versions of the libraries with debug information are also
available to subscribers.

Sourcery G++ Subscriptions

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

2.2. Accessing your Sourcery G++ Subscription
Account

If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portall. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

! https://support.codesourcery.com/GNUToolchain/

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Chapter 3
Sourcery G++ Lite for ARM

uClinux

This chapter contains information about using Sourcery G++ Lite on your target system.
This chapter also contains information about changes in this release of Sourcery G++ Lite.
You should read this chapter to learn how to best use Sourcery G++ Lite on your target
system.

10

Sourcery G++ Lite for ARM uClinux

3.1. Library Configurations

Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Each multilib corresponds to a sysroot directory that contains the files that should be installed on
the target system. You can find the sysroot directories provided with Sourcery G++ in the
arm-uclinuxeabi/libc directory of your installation.

3.1.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ARM uClinux.

ARMVAT - Little-Endian, Soft-Float
Command-line option(s): default

Sysroot subdirectory: V4

ARMvV6-M Thumb - Little-Endian, Soft-Float
Command-line option(s): -mthumb -march=armv6-m

Sysroot subdirectory: armve-m/

ARMvV7 Thumb-2 - Little-Endian, Soft-Float
Command-line option(s): -mthumb -march=armv7 -mfix-cortex-m3-1drd

Sysroot subdirectory: thumb2/

3.1.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the —-print-multi-directory option in addition to your other
build options. For example:

> arm-uclinuxeabi-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

11

Sourcery G++ Lite for ARM uClinux

3.2. Using Sourcery G++ Lite for ARM uClinux

3.2.1. Using VFP Floating Point

3.2.1.1. Enabling Hardware Floating Point
GCC provides three basic options for compiling floating-point code:

» Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

» VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mFloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

» VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mFloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

Sourcery G++ Lite for ARM uClinux includes libraries built with software floating point, which are
compatible with VFP code compiled using the soft-float ABI. While the compiler is capable of
generating code using the VFP ABI, no compatible runtime libraries are provided for uClinux targets.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -m¥pu option. For example, -mFpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.2.1.2. NEON SIMD Code

Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mFpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon . h header and are documented in the '"ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -fFtree-vectorize is not required.

12

Sourcery G++ Lite for ARM uClinux

3.2.1.3. Half-Precision Floating Point

Sourcery G++ for ARM uClinux includes support for half-precision (16-bit) floating point, including
the new _ fpl16 data type in C and C++, support for generating conversion instructions when
compiling for processors that support them, and library functions for use in other cases.

3.2.1.3.1. Representations

ARM supports two incompatible representations for half-precision floating-point values. You must
choose one of the representations and use it consistently in your program. The linker gives an error
if objects compiled or assembled with different half-precision float attributes are combined in the
same executable.

Compiling or assembling with -mfpl6-Fformat=ieee selects the representation defined in the
| EEE 754-2008 standard, with 1 sign bit, 5 exponent bits, and 10 significand bits (11 bits of significand
precision, approximately 3 decimal digits). This format is capable of representing normalized values
in the range of 271 to 65504. It includes support for infinities and NaNs, following the usual IEEE
754 rules.

ARM also supports an alternative half-precision representation, which you can select with
-mfpl6-Format=alternative. This format does not include support for infinities and NaNs.
Instead, the range of exponent values is extended, so that this format can represent normalized values
in the range of 274 to 131008.

The default for this option is -mfpl6-Fformat=none, which disables support for half-precision
floats.

3.2.1.3.2. C and C++ Usage

When you compile with -mfpl6-format=ieee or -mfpl6-format=alternative, GCC
defines the __ Fp16 data type to represent half-precision float values. Objects of this type have a
size of 2 bytes and a natural alignment of 2 bytes.

The _ fpl6 typeis astorage format only. For purposes of arithmetic and other operations, fp16
values are automatically promoted to Float. In addition, you cannot declare a function with a return
value or parameters of type __ fp16.

Note that conversions from double to _ fpl16 involve an intermediate conversion to float.
Because of rounding, this can sometimes produce a different result than a direct conversion.

3.2.1.3.3. Hardware and Library Support

ARM provides hardware support for conversions between __ p16 and Float values as an extension
to VFP and NEON (Advanced SIMD). GCC generates code using the instructions provided by this
extension if you compile with the options -mfpu=neon-fpl6 -mfloat-abi=softfp, in
addition to the -mfpl16-Format option to select a half-precision format.

In other cases, conversions between _ fp16 and Float values are implemented as library calls.
3.2.2. ABI Compatibility

The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

13

Sourcery G++ Lite for ARM uClinux

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center:

« BSABI - ARM IHI 0036B (10 October 2008)

BPABI - ARM IHI 0037B (10 October 2008)

« EHABI - ARM IHI 0038A (10 October 2008)

« CLIBABI - ARM IHI 0039A (10 October 2008)

« AADWARF - ARM IHI 0040A (10 October 2008)
« CPPABI - ARM IHI 0041B (10 October 2008)

« AAPCS - ARM IHI 0042C (10 October 2008)

« RTABI - ARM IHI 0043B (10 October 2008)

« AAELF - ARM IHI 0044C (10 October 2008)

« ABI Addenda - ARM IHI 0045B (10 October 2008)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

3.2.3. Building uClinux Applications

When you use GCC to link a uClinux application, it creates two output files. The executable file, as
specified by the —o command-line option, is a uClinux FLAT format binary (bFLT) file. This is the
file you should copy to and run on your uClinux target. The second output file is an ELF-format file
containing additional debug and symbol table information to allow you to debug your program with
GDB, as described in Section 3.2.4, “GDB Server”. This file has a . gdb extension.

For example, if you specify the command
arm-uclinuxeabi-gcc foo.c -0 bar

then bar is the FLAT-format executable and bar . gdb is the ELF-format file.

3.2.4. GDB Server

Sourcery G++ Lite contains a gdbserver for running on the target. The server executable is located
in the sysr oot / usr/bin directory of your installation, where sysr oot is the pathname to the
sysroot, as documented in Section 3.1, “Library Configurations”. You need to copy the appropriate
gdbserver executable to your target system and then invoke it as

gdbserver :port program

port can be any available TCP port; 5000 is a common choice. gdbserver waits for a connection
from gdb and then commences serving requests for it. To connect to gdbserver from your host
system, start gdb, but specify the special . gdb version of your program.

> arm-uclinuxeabi-gdb program.gdb

L http://infocenter.arm.com

14

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

Sourcery G++ Lite for ARM uClinux

Then connect to the target system:
(gdb) target remote host :port

At this point you are able to debug as usual.

3.3. Sourcery G++ Lite Release Notes
This section documents Sourcery G++ Lite changes for each released revision.

3.3.1. Changes in Sourcery G++ Lite 2009g1-163

Incorrect placement of linker-generated functions. A bug that caused some linker-generated
functions (including stubs to support interworking from ARM mode to Thumb mode and stubs to
avoid processor errata) to be placed in data sections has been fixed.

New option for automatically generating IT blocks. The assembler now allows use of condi-
tional Thumb-2 instructions without requiring explicit IT instructions. Use the -mauto- it command-
line option to enable this automatic generation of IT instructions.

Incorrect code when using - fal i gn-1 abel s . A bug that caused the compiler to generate
incorrect code for switch statements when the —fal ign-1abel's option is used has been fixed.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Assembler bug fix. A bug in the assembler that caused duplicate and missing mapping symbols
has been fixed. The bug caused incorrect objdump output and incorrect byte-swapping for BES
configurations.

Stack backtracing and C++ exception handling. Improvements have been made to the linker
in support of C++ runtime exception handling and stack backtracing. A problem that caused crashes
during the backtrace of C routines that were not compiled with the —Fexceptions option has
been fixed. In addition, the linker generates more compact stack unwinding tables which can lead
to smaller executables.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (such
as stubs to support interworking from ARM mode to Thumb mode) to contain only nop instructions
instead of correct code sequences has been fixed.

Assembler diagnostics for invalid instructions. The assembler now issues diagnostics for invalid
ADR and ADRL instructions. Formerly, these invalid instructions were silently mis-assembled. This
assembler bug did not affect correct code.

Sprite’s failure to reset the target. A bug has been fixed that sometimes caused the Sourcery
G++ Debug Sprite to fail to reset the target when using the multiple sequential connection feature
(enabled via the -m command-line option). This problem was specific to running the Debug Sprite
on Microsoft Windows hosts.

Loop optimization improvements. A new option, -Fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

15

Sourcery G++ Lite for ARM uClinux

Disassembler bug fix. A bug has been fixed that caused incorrect disassembly of some object
files with multiple sections whose symbol tables included symbols in the middle of functions. These
typically resulted from hand-written assembly.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

Linker crash with very large applications. A linker bug that caused a crash when linking very
large applications with the -—Fix-cortex-a8 command-line option has been fixed.

Assembler marking of data. Data generated using the assembler directives .asci i, -asciz,
.dc.d, .dc.s, .dc.x, .dcb, .dcb.b, .dcb.d, .dcb.1, .dcb.s, .dcb.w, .dcb.x, .ds,
.ds.b,.ds.d, .ds.1l, .ds.p, -ds.s, .ds.w, .ds.x, .double, . Fill, .float, . incbin,
.single, .space, .skip, .string, -string8, .stringl6, .string32, .string64,
and .zero is now correctly marked by the assembler as data rather than code. This fixes incorrect
byte-swapping of such data when linking for BE8 configurations.

arm-uclinuxeabi-objcopy bug fix. A bug has been fixed that caused arm-uclinuxeabi-objcopy
to issue an error when generating output in the Intel HEX format and using
-—change-section-Ima to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with —L command-line
options, and finally in the default system linker script directory.

Cortex-A8 erratum workaround enabled for ARMv7-A. The workaround for the erratum in
Cortex-A8 processors mentioned below is now enabled by default if you are targeting the ARMv7-
A architecture profile. The workaround can be disabled by passing the —-no-Ffix-cortex-a8
option to the linker.

Improved vectorization. Automatic vectorization for NEON now uses the fused multiply-add
(VMLA) and fused multiply-subtract (VMLS) instructions. These fused instructions are faster than the
equivalent two-instruction sequence consisting of a multiply followed by an add or subtract.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can"t do that without a process to debug. when debugging a core dump file.

Out-of-bounds accesses to stack arrays. A bug has been fixed that caused internal compiler
errors when some code involving out-of-bounds accesses to stack-allocated arrays was compiled
with the -mthumb option. Such code is not valid C; although it is now accepted by the compiler
and no diagnostic is issued, it has undefined behavior if executed.

Erratum workaround for Cortex-A8 processors. The linker now implements a workaround
for an erratum in Cortex-A8 processors. If you are targeting an affected part and wish to use the
workaround, pass the —-Fix-cortex-a8 option to the linker. Please contact ARM for further
details of the erratum.

Maximum code alignment increased. The maximum allowed code alignment has been increased
from 32 to 64 bytes. This change affects the .p2align and .al ign directives in GAS and the
-falign-functions GCC option.

16

Sourcery G++ Lite for ARM uClinux

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

3.3.2. Changes in Sourcery G++ Lite 2009gq1-118

GCC version 4.3.3. Sourcery G++ Lite for ARM uClinux is now based on GCC version 4.3.3.
This is a bug fix update to GCC. For more information about changes from GCC version 4.3.2 that
was included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes._html.

Improved NOP generation for Thumb-2 cores. The assembler now generates Thumb-2/ARMv6K
architectural NOP instructions when alignment padding is required in code sections.

Internal compiler error with - @3 or - f predi cti ve-conmoni ng. A bug has been fixed
that caused internal compiler errors when compiling some code with -03 or
-fpredictive-commoning.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on ARM uClinux
targets. This includes processors for which Sourcery G++ Lite does not include appropriate run-time
libraries. In addition, CS3 support for boards based on Cortex-M3 processors has been removed as
these boards are not sufficiently powerful to run uClinux. These changes are intended to simplify
processor and board selection.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eqand xor_eq
were used in contexts where the preprocessor converts their names to strings.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

Linker errors on non-ELF input. A bug has been fixed that caused internal errors from the
linker when linking non-ELF input files (with the —b or ——Fformat linker options).

Undefined weak references in shared libraries. A linker bug has been fixed affecting calls from
Thumb code in shared libraries to functions that are undefined weak references when the shared
library is linked. Such calls executed as nops whether or not the functions were defined at run time.

uClibc spli ce,vnspl i ce andt ee functions. uClibc now provides the functions splice,
vmsplice and tee.

Improved code generation. The compiler has been improved to generate better code for an integer
multiplication whose result feeds into an addition.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Performance improvements. Tuning parameters for ARM code generation have been adjusted
to improve performance of the generated code.

17

Sourcery G++ Lite for ARM uClinux

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Remote debugging connection auto-retry. The target remote command within GDB now uses
a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding race
conditions when the remote GDB stub or GDB server is launched simultaneously with GDB. The
auto-retry behavior is enabled by default; refer to the GDB manual for details.

CMVP Thumb-2 instruction. The assembler no longer issues an error about CMP instructions in
which the second argument is the stack pointer (r13), as these are valid instructions. However, use
of the stack pointer in this context is deprecated in the current ARM architecture specification and
the assembler now warns about the deprecated use.

DMVB, DSB, and | SBinstructions on ARMv6-M. The assembler now accepts the DMB, DSB, and
ISB instructions on ARMv6-M CPUs, including Cortex-M0 and Cortex-M1. These instructions
were incorrectly rejected on these CPUs in previous releases.

Thumb half-precision floating point bug fix. A compiler bug has been fixed that formerly
caused incorrect code to be generated in Thumb mode for functions using half-precision floating-
point constants. The bug did not affect Thumb-2 code.

Improved code generation. The compiler has been improved to generate better code for integer
multiplication by certain constants.

Thumb-2 swi t ch code generation bug fix. A bug has been fixed that caused incorrect Thumb-
2 code to be generated for some switch statements.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Internal compiler error with large NEON types. A bug has been fixed that caused internal
compiler errors when compiling code using NEON types at least 32 bytes wide.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPD IR variables were set to
a suitable directory.

Vectorized shift fix. A bug has been fixed that caused incorrect code for loops containing a right
shift by a constant. The bug affected code compiled with -mfpu=neon and loop vectorization enabled
with -03 or —-ftree-vectorize.

Incorrect code for nested functions. A bug in GCC that caused the compiler to generate incorrect
code for nested functions has been fixed. The bug resulted in incorrect stack alignments in the affected
functions.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

ARM build attributes conformance improvements. Several ARM EABI 2.07 conformance
issues relating to the handling of build attributes in the assembler and linker have been fixed. All
build attribute types are now recognized, and can now be declared by name, in addition to by number.

18

Sourcery G++ Lite for ARM uClinux

Support for merging attributes in the linker has been improved, and the linking of incompatible objects
is now detected and rejected in more cases.

Internal compiler error with - f r enove- | ocal -stati cs. Aninternal compiler error that
occurred when using the —Fremove-local -statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

Linker crash on incompatible input files. Some third-party compilers, including ARM
RealView® 4.0, produce a build attribute marking output files that are not compatible with the ABI
for the ARM Architecture. This attribute sometimes caused the linker to crash. The linker now cor-
rectly issues an error message.

3.3.3. Changes in Sourcery G++ Lite 2008g3-68

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the —a option) on Windows hosts has been fixed.

Optimizer bug fix. A bug that caused an unrecognizable insn internal compiler error
when compiling at optimization levels above —-00 has been fixed.

VFP compiler fix. A compiler bug that resulted in internal compiler error: output_
operand: invalid expression as operand when generating VFP code has been fixed.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

Workaround for Cortex-M3 CPU errata. Errata present in some Cortex-M3 cores can cause
data corruption when overlapping registers are used in LDRD instructions. The compiler avoids
generating these problematic instructions when the -mFfix-cortex-m3-1drd or
-mcpu=cortex-m3 command-line options are used. The Sourcery G++ runtime libraries have
also been updated to include this workaround.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "‘nane™
outside of ELF segments for such binaries; the warning has now been fixed.

Misaligned NEON memory accesses. A bug has been fixed that caused the compiler to use
aligned NEON load/store instructions to access misaligned data when autovectorizing certain loops.
The bug affected code compiled with -mFpu=neon and loop vectorization enabled with —-03 or
-ftree-vectorize.

Sprite crash on error. A bug has been fixed which sometimes caused the Sourcery G++ Debug
Sprite to crash when it attempted to send an error message to GDB.

Persistent remote server connections. A GDB bug has been fixed that caused the target exten-
ded-remote command to fail to tell the remote server to make the connection persistent across program
invocations.

3.3.4. Changes in Sourcery G++ Lite 200893-42

Definitionofva_l i st. Inorderto conform to the ABI for the ARM Architecture, the definition
of the type of va_ list (defined in stdarg. h) has been changed. This change impacts only the
mangled names of C++ entities. For example, the mangled name of a C++ function taking an argument

19

Sourcery G++ Lite for ARM uClinux

of typeva_list,orva_list *, oranother type involving va_ 1l ist has changed. Since this is
an incompatible change, you must recompile and relink any modules defining or using affected va_
I i st-typed entities.

Thumb-2 assembler fixes. The Thumb-2 encodings of QADD, QDADD, QSUB, and QDSUB have
been corrected. Previous versions of the assembler generated incorrect object files for these instruc-
tions. The assembler now accepts the ORN, QASX, QSAX, RRX, SHASX, SHSAX, SSAX, USAX,
UHASX, UQSAX, and USAX mnemonics. The assembler now detects and issues errors for invalid
uses of register 13 (the stack pointer) and register 15 (the program counter) in many instructions.

Printing casted valuesin GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Improved support for debugging RealView® objects. GDB support for programs compiled
by the ARM RealView® compiler has been improved.

Binutils support for DWARF Version 3. The addr2line command now supports binaries con-
taining DWARF 3 debugging information. The Id command can display error messages with source
locations for input files containing DWARF 3 debugging information.

NEON improvements. Several improvements and bug fixes have been made to the NEON Ad-
vanced SIMD Extension support in GCC. A problem that caused the autovectorizer to fail in some
circumstances has been fixed. Also, many of the intrinsics available via the arm_neon.h header
file now have improved error checking for out-of-bounds arguments, and the vget_lane intrinsics
that return signed values now produce improved code.

NEON compiler fix. A compiler bug that resulted in incorrect NEON code being generated has
been fixed. Typically the incorrect code occurred when NEON intrinsics were used inside small i
statements.

Connecting to the target using a pipe. A bug in GDB's target remote | pr ogr amcommand
has been fixed. When launching the specified pr ogr amfailed, the bug caused GDB to crash, hang,
or give a message Error: No Error.

Mixed-case NEON register aliases. An assembler bug that prevented NEON register aliases
from being created with mixed-case names using the .dn and . gn directives has been fixed. Previ-
ously only aliases created with all-lowercase or all-uppercase names worked correctly.

Improvements to elf2flt utility. ~ The elf2flt utility, automatically run by Sourcery G++ when
linking uClinux applications, is now compatible with the linker option --gc-sections. Previously,
applications linked with —-gc-sections terminated at startup with an illegal instruction error.

Janus 2CC support. GCC now includes a work-around for a hardware bug in Avalent Janus
2CC cores. To compile and link for these cores, use the -mFix-janus-2cc compiler option. If
you are using the linker directly use the —-Fix-janus-2cc linker option.

ARM exception handling bug fix. A bug in the runtime library has been fixed that formerly
caused throwing an unexpected exception in C++ to crash instead of calling the unexpected exception
handler. The bug only affected C++ code compiled by non-GNU compilers such as ARM Real View®.

Mangling of NEON type names. A bug in the algorithm used by the C++ compiler for mangling
the names of NEON types, such as int8x16_t, has been fixed. These mangled names are used
internally in object files to encode type information in addition to the programmer-visible names of

20

Sourcery G++ Lite for ARM uClinux

the C++ variables and functions. The new mangled name encoding is more compact and conforms
to the ARM C++ ABI.

LinuxThreads support. The included uClibc now supports the LinuxThreads implementation
of POSIX threads for the ARMvAT multilib. Please note that this feature is not yet supported by the
ARMvV6-M Thumb and ARMv7 Thumb-2 multilibs.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Half-precision floating point. Sourcery G++ now includes support for half-precision floating
point via the __ Fp16 type in C and C++. The compiler can generate code using either hardware
support or library routines. For more information, see Section 3.2.1.3, “Half-Precision Floating
Point”.

3.3.5. Changes in Sourcery G++ Lite 2008g3-9

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, improved
Thumb mode support, the new find command to search memory, the new /m (mixed source and
assembly) option to the disassemble command, and the new macro define command to define C
preprocessor macros interactively.

Uppercase operands to IT instructions. The assembler now accepts both uppercase and lowercase
operands for the 1T family of instructions.

NEON autovectorizer fix. A compiler bug that caused generation of bad VLD1 instructions has
been fixed. The bug affected code compiled with -mfpu=neon -ftree-vectorize.

Remote debugging improvements. The gdbserver utility now supports a more efficient com-
munications protocol that can reduce latency during remote debugging. The protocol optimizations
are enabled automatically when gdbserver operates over a TCP connection. Refer to the GDB
manual for more information.

Output files removed on error. ~ When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

Memory access errors when setting breakpoints. A GDB bug that caused spurious "Cannot
access memory" errors has been fixed. The errors occurred when setting breakpoints after the program
being debugged exited or was killed.

ARMV7 offset out of range errors. An assembler bug that resulted in offset out of
range errors when compiling for ARMv7 processors has been fixed.

Thumb-2 MJL encoding. In Thumb-2 mode, the assembler now encodes MUL as a 16-bit instruction
(rather than as a 32-bit instruction) when possible. This fix results in smaller code, with no loss of
performance.

ARM C++ ABI utility functions. Vector utility functions required by the ARM C++ ABI no
longer crash when passed null pointers. The affected functionsare __aeabi_vec_dtor_cookie,
__aeabi_vec _delete, aeabi_vec delete3,and__aeabi_vec_delete3_nodtor.
These functions are not intended for use by application programmers; they are only called by compiler-
generated code. They are not presently used by the GNU C++ compiler, but are used by some other
compilers, including ARM's Real View® compiler.

21

Sourcery G++ Lite for ARM uClinux

GCC version 4.3.2. Sourcery G++ Lite for ARM uClinux is now based on GCC version 4.3.2.
For more information about changes from GCC version 4.2 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.3/changes.html.

Smaller Thumb-2 code. When optimizing for size (i.e., when -Os is in use), GCC now generates
the 16-bit MULS Thumb-2 multiply instruction instead of the 32-bit MUL instruction.

Thumb-2 RBI T encoding. An assembler bug that resulted in incorrect encoding of the Thumb-
2 RBIT instruction has been fixed.

Sprite communication improvements. The Sourcery G++ Debug Sprite now uses a more efficient
protocol for communicating with GDB. This can result in less latency when debugging, especially
when running the Sprite on a remote machine over a network connection.

Marvell Feroceon compiler bug fix. A bug that caused an internal compiler error when optim-
izing for Marvell Feroceon CPUs has been fixed.

Misaligned accesses to packed structures fix. A bug that caused GCC to generate misaligned
accesses to packed structures has been fixed.

Bug fix for objdump on Windows. An objdump bug that caused the —S option not to work on
Windows in some cases has been fixed.

3.3.6. Changes in Sourcery G++ Lite 2008q1-152

Printing global variables in GDB. A GDB bug that caused errors in printing values of global
variables in the debugger has been fixed. GDB was formerly computing addresses of such variables
incorrectly; in some cases, this resulted in incorrect values being printed, while in others, it resulted
in memory access errors in the remote gdbserver.

3.3.7. Changes in Sourcery G++ Lite 2008g1-126

Disassembler bug fix. A bug in the disassembler has been fixed that formerly caused objdump
to crash when processing raw binary files, or other executables with an empty symbol table.

NEON assembler symbols. An assembler bug that caused spurious undefined symbols to be
generated has been fixed. The mov dO, d1 instruction would incorrectly cause an undefined
symbol d1 to be created.

GDB info registers crash fix. Executing info registers after executing flushregs no longer
crashes GDB.

3.3.8. Changes in Sourcery G++ Lite 2008g1-102

GDB and Ctrl+C on Windows . GDB no longer crashes when you press Ctrl+C twice during
remote debugging to give up waiting for the target.

ARM Cortex-A9 processor support. The compiler can now generate code optimized for the
ARM Cortex-A9 processor. This is enabled by the the -mcpu=cortex-a9 command-line option.

MOVW and MOVT relocations. A linker error that resulted in incorrect offsets when processing
relocations on MOVW and MOVT instructions referencing mergeable string sections has been fixed.

Improved argument-passing code. The compiler can now generate more efficient code for certain
functions whose arguments must be sign-extended to conform with language or ABI conventions.
The required conversion was formerly being performed both in the called function and at all call

22

Sourcery G++ Lite for ARM uClinux

sites; now the redundant conversion has been eliminated for functions that can only be called within
the compilation unit where they are defined.

Multi-process mode for gdbserver. The gdbserver utility has a new command-line option,
—-—-multi, that allows you to use it to debug multiple program instances. Refer to the Debugger
manual for more information.

GDB qO f set s crash fix. ~ GDB no longer crashes when a remote stub provides load offsets
for an unlinked object file.

Linker error allocating ELF segments. A bug where the linker produces an incorrect error
message with segments at the top of the address space has been fixed.

GCC stack size limit increased. On Windows hosts, the maximum stack size for the GCC ex-
ecutable has been increased. This means that more complex programs can be compiled.

Invalid object file after strip. A bug in the assembler has been fixed that formerly caused .set
synbol expressi on constructs to emit synbol in the wrong section. This in turn caused in-
consistent behavior after stripping the symbol table.

GCCupdate. The GCC package has been updated to version 4.2.3. This version includes numerous
bug fixes since GCC 4.2.

License checking on Linux. Sourcery G++'s license-checking logic now includes a workaround
for a kernel bug present in some versions of Linux. This bug formerly caused failures with an error
message from the cs-1icense component.

Cortex-R4F and VFPv3-D16. Sourcery G++ now supports the ARM Cortex-R4F CPU and the
VFPv3-D16 floating-point coprocessor. These can be selected with -mcpu=cortex-r4f and
-mFpu=vFpv3-d16, respectively.

Overlapping operands for long multiply instructions. An incorrect assembler warning has
been removed in the case of overlapping source and destination operands for UMULL, SMULL, UMLAL
and SMLAL instructions on ARMV6 processors.

Size optimization bug. A code generation bug that caused corruption of function arguments
when compiling with —Os has been fixed. The corruption occurred as part of the sibling call optim-
ization.

C++ library ABI fix. GCC 4.2.1's std: - type_info was not fully compatible with earlier
versions. The ordering of four virtual functions has been fixed in this update.

GDB support for user-defined prefixed commands. The GDB define and document commands,
which allow you to add new commands to the GDB command-line interface, now support creating
commands within an existing prefix such as target. Hooks for prefixed commands are also supported.
Refer to the Debugger manual for more information.

GDB update. The included version of GDB has been updated to 6.7.20080107. This update in-
cludes numerous bug fixes.

UNC pathname bug fix. A bug has been fixed that caused linker errors on Windows hosts when
running a Sourcery G++ toolchain installed in a UNC path (\\host \di r ect or y).

Linker crash on invalid input files. Some older versions of GCC generated object files with
invalid mergeable string sections when compiling with —fmerge-al l-constants. This bug
was fixed in Sourcery G++ as of version 4.1-43. However, since system libraries included with some

23

Sourcery G++ Lite for ARM uClinux

GNU/Linux distributions were affected by this bug, the linker has now been changed to accept object
files with such invalid sections, rather than crash or produce an error message.

GDB search path bug fix. A bug in GDB has been fixed that formerly resulted in an internal
error when setting sol ib-search-path or sol ib-absolute-prefix after establishing a
connection to a remote target.

Binutils update. The binutils package has been updated to version 2.18.50.20080215 from the
FSF trunk. This update includes numerous bug fixes.

gdbserver support for execution wrappers. gdbserver has a new command-line option,
——wrapper, which specifies a wrapper for any programs run by gdbserver. The specified wrapper
can prepare the system and environment for the new program.

Read-only variables. The C++ compiler now places variables whose types are instantiations of
template classes in a read-only data section if they are declared const and initialized with a constant
value. This changes reduces the RAM usage of affected applications.

CodeSourcery Common Startup Code Sequence. Support for CS3, a unified startup scheme
is included.

Improvements to flthdr utility. The flthdr utility has been improved so that it no longer depends
on external utility programs. In particular, the compression and decompression options now work
correctly on Windows.

3.3.9. Changes in Sourcery G++ Lite 2007g3-51

Volatile postincrement and postdecrement bug fix. A code generation bug that caused postin-
crement or postdecrement of a volatile object to reread the modified value from that object in some
contexts has been fixed. The bug affected code performing a comparison of the postincrement or
postdecrement expression with a constant, or that was optimized to comparison with a constant.

Support for debugging with FlashPro3. Support has been added for debugging with the Actel
FlashPro3 JTAG device on Windows hosts. This works only with Actel Cortex-M1 FPGAs.

C++ class debug information. The flag -femit-class-debug-always is now disabled
by default. The flag produces duplicate C++ class debug information as a work-around for older
debuggers.

Improved breakpoints in constructors and template functions. GDB now supports breakpoints
on source code locations that have several code addresses associated with them. Setting a breakpoint
on a constructor automatically associates the breakpoint with all constructor bodies generated by
GCC. If you set a breakpoint on a line of a templated function, GDB breaks at the indicated line in
all instantiations of the templated function.

GDB printf %op. GDB's printf command now supports the **%p"* format specifier.

GDB update. The included version of GDB has been updated to 6.6.20070821. This update in-
cludes numerous bug fixes.

Assembler code file name suffixes. ~ GCC now recognizes . sx aswell as . S as a file name suffix
indicating assembler code which must be preprocessed. The alternate suffix may be useful in con-
junction with other program development tools on Windows that do not distinguish case on filenames
and treat . S the same as - s, which GCC uses to indicate assembler code without preprocessing.

24

Sourcery G++ Lite for ARM uClinux

3.3.10. Changes in Sourcery G++ Lite 2007g3-33

Preprocessing assembly code. The compiler driver passes — 1 options to the assembler, so that
#include directives (processed by the preprocessor) and . include directives (processed by the
assembler) use the same search path.

uClibc mentpy and nenmove functions. A bug that caused the uClibc implementations of
memcpy and memmove to return incorrect values has been fixed.

Dynamically-initialized const variables. Dynamically-initialized namespace-scope C++
variables are no longer placed in read-only data sections, even when marked const. These variables
must be modified at startup, so they cannot be placed in ROM, even though their values cannot
change once initialized.

Register allocation bug fix. A register allocation bug has been fixed. Under rare circumstances,
the bug caused incorrect code generation.

iIWMMXt bug fix. A GCC bug affecting code generation for iwWMMXt processors has been
fixed. The bug caused internal compiler errors when compiling some functions with large stack
frames.

NEON coprocessor system registers. The assembler now accepts the MVFRO and MVFR1 cop-
rocessor registers in fmrx and fmxr instructions.

Disabling diagnostics for use of system header and library directories. The warnings for use
of options such as - 1/usr/include when cross compiling can be disabled with a new option
-Wno-poison-system-directories. Thisoption is intended for use in chroot environments
when such directories contain the correct headers and libraries for the target system rather than the
host.

Default linker script. GCC no longer uses the simulator linker script by default. To avoid a link
failure, you must specify a linker script explicitly with the —T command-line option, or via the
Properties item on the Project menu in the Sourcery G++ IDE.

Thumb-2 doubleword writeback addressing modes. An assembler bug that caused writeback
addressing modes for 1drd and strd to be incorrectly encoded has been fixed.

Stricter check for anonymous unions. G++ now issues an error about invalid code that uses the
same name for a member of an anonymous union and an entity in the surrounding namespace. For
example, you will now get an error about code like:

int i;
static union { int i; };

because both the global variable and the anonymous union member are named i. To make this code
valid you must change one of the declarations to use a different name.

GCCupdate. The GCC package has been updated to version 4.2.1. This version includes numerous
bug fixes since GCC 4.2.

Smaller code for C++ destructors. G++ now generates more compact code to handle the destruc-
tion of C++ objects declared at namespace scope or declared within a function scope using the
static keyword.

Robustness on Microsoft Windows. Defects that sometimes caused GDB to become non-re-
sponsive on Microsoft Windows have been eliminated.

25

Sourcery G++ Lite for ARM uClinux

Binutils update. The binutils package has been updated to the 2007-08-19 version of the pre-
2.18 FSF trunk. This contains many new improvements and bug fixes. For more information, refer
to the manuals for the individual utilities, and to the binutils web site at http://www.gnu.org/
software/binutils/.

Debugging information fix. ~ GCC no longer generates invalid debugging information for sections
with no contents. The invalid debugging information caused the GNU/Linux prelinker to crash.

Calls to undefined weak symbols. The linker now implements semantics that comply to the
ARM EABI forR_ARM_CALL and T_ARM_THM_CALL relocations against undefined weak symbols.
These now result in a jump to the next instruction.

Thumb-2 shift instruction aliases. The assembler now accepts mov with shifted operands as an
alias for Thumb-2 shift instructions. For example mov r0O, rl1, Isl r2isencoded as Isl
rO, ri1, r2

Inlined function debugging fix. ~ GDB now backtraces correctly when stopped at the first instruc-
tion of an inlined function. Earlier versions would sometimes encounter internal errors in this situation.

Assembler skipping \ characters. A bug is fixed where the assembler would skip \ characters
when they appeared at certain positions in the input file. This bug primarily affected assembler
macros.

Improved diagnostics for region overflow. The linker will now give more helpful diagnostics
when the object files being linked are too big for one of the memory regions defined in the linker
script.

EABI object attribute merging. The linker now properly merges EABI object attributes into its
output file.

Thumb-2 exception return instructions. An assembler bug that caused subs pc, Ir,
#const and movs pc, Ir tobe incorrectly encoded has been fixed.

Tag_ABI_PCS_wchar_t object attributes. Objects generated with -fshort-wchar are now
given the correct Tag_ABI_PCS_wchar_t EABI object attribute annotations.

Spurious compiler warnings eliminated. ~ GCC no longer emits warnings when linker-specific
command-line options are provided in combination with modes that do not perform linking, such as
with the -c flag.

Debugging of inlined functions. GDB now supports inlined functions. GDB can include inlined
functions in the stack trace; display inlined functions' arguments and local variables; and step into,
over, and out of inlined functions.

Uppercase special register names. The assembler now accepts both uppercase and lowercase
special register names when assembling msr and mrs instructions for the Microcontroller profile
of the ARM Architecture.

Debugger access to out-of-bounds memory. GDB turns on inaccessible-by-default
by default, disallowing access to memory outside the regions specified in a board configuration.

Call shortening bug fix. =~ GCC no longer overrides __attribute__ ((long_call)) on
calls to locally-defined functions when the function is weak, or when it is in a different section from
the caller.

26

Sourcery G++ Lite for ARM uClinux

Binutils update. The binutils package has been updated from version 2.17 to the pre-2.18 FSF
trunk. This is a significant update with many improvements and bug fixes.

Changes to the assembler (as) include:

» On MIPS targets, support for additional processors and the SmartMIPS and DSP Release 2 exten-
sions has been added.

New linker (Id) features include:

» A new command-line option ——defaul t-script has been added to give more precise control
over linker script processing.

e There are new command-line options -Bsymbolic-functions, —--dynamic-list,
—--dynamic-list-cpp-new, and -—dynamic-l ist-datato control symbols that should
be dynamically linked.

» The new -—print-gc-sections option lists sections removed by garbage collection.
Other changes include:

» The objcopy utility has a new —-extract-symbol option to extract only symbol table inform-
ation from the input file.

» The gprof utility now allows input files to have histogram records for several memory ranges,
provided those ranges are disjoint.

For more information, refer to the manuals for the individual utilities, and the binutils web site at
http://www._gnu.org/software/binutils/.

GDB update. The included version of GDB has been updated to 6.6.50.20070620. This update
includes humerous bug fixes.

Forced alignment of array variables. A new option —fal ign-arrays has been added to the
compiler. Specifying this option sets the minimum alignment for array variables to be the largest
power of two less than or equal to their total storage size, or the biggest alignment used on the machine,
whichever is smaller. This option may be helpful when compiling legacy code that uses type punning
on arrays that does not strictly conform to the C standard.

ARM EABI compliance. Objects produced by Sourcery G++ are now marked as ARM ELF
version 5 rather than ARM ELF version 4. This reflects compliance with recent revisions of the
ARM EABI. Sourcery G++ still accepts objects marked with version 4.

Smaller C++ applications. The C++ runtime library has been modified so that using namespace-
scope objects with destructors does not pull in unnecessary support functions. Therefore, statically
linked C++ applications compiled with -Fno-exceptions are substantially smaller.

ARMV6-M floating-point bug fix. A bug affecting conversion of wider floating-point types to
subnormal Float values on ARMv6-M processors has been fixed.

3.3.11. Changes in Sourcery G++ Lite 2007g1-21

NEON coprocessor system registers. The assembler now accepts the MVFRO and MVFR1 cop-
rocessor registers in fmrx and fmxr instructions.

27

Sourcery G++ Lite for ARM uClinux

Disabling diagnostics for use of system header and library directories. The warnings for use
of options such as - 1/usr/include when cross compiling can be disabled with a new option
-Wno-poison-system-directories. Thisoption is intended for use in chroot environments
when such directories contain the correct headers and libraries for the target system rather than the
host.

Thumb-2 doubleword writeback addressing modes. An assembler bug that caused writeback
addressing modes for 1drd and strd to be incorrectly encoded has been fixed.

Thumb-2 shift instruction aliases. The assembler now accepts mov with shifted operands as an
alias for Thumb-2 shift instructions. For example mov rO, rl1, Isl r2isencoded as Isl
ro, rl, r2.

EABI object attribute merging. The linker now properly merges EABI object attributes into its
output file.

Thumb-2 exception return instructions. An assembler bug that caused subs pc, Ir,
#const and movs pc, Ir tobe incorrectly encoded has been fixed.

Tag_ABI_PCS_wchar_t object attributes. Objects generated with -fshort-wchar are now
given the correct Tag_ABI_PCS_wchar_t EABI object attribute annotations.

Uppercase special register names. The assembler now accepts both uppercase and lowercase
special register names when assembling msr and mrs instructions for the Microcontroller profile
of the ARM Architecture.

3.3.12. Changes in Sourcery G++ Lite 2007g1-10

Disassembly of overlapping sections. A bug in the disassembler that caused code to be displayed
as data (and vice-versa) in files with overlapping sections has been fixed. This mainly affects the
objdump utility.

Installer hangs while refreshing environment. The Sourcery G++ installer for Microsoft Win-
dows now updates the PATH environment variable without waiting for open applications to acknow-
ledge the update. This change prevents open applications from blocking the installer's progress.

Improved assembler diagnostics for 8-bit offsets. The assembler now correctly diagnoses out-
of-range offsets to instructions such as LDRD as 8-bit rather than half-word offsets.

Less disk space required for installation. Sourcery G++ Lite packages are smaller because
multiple copies of files have been replaced with hard and/or symbolic links when possible. Both the
size of the installer images and the amount of disk space required for an installed package have been
reduced.

Thumb register corruption fix. A bug in the compiler that could cause register corruption in
Thumb mode has been fixed. The compiler was formerly emitting code to restore registers on function
return that was not interrupt safe.

__aeabi_lcmp. Anerror in the libgcc implementation of __aeabi_ 1 cmp that caused incorrect
results to be returned has been fixed. This is a support routine defined by the ARM EABI. GCC does
not normally use this routine directly, however it may be used by third-party code.

The \ @assembler pseudo-variable. A bug in the assembler that caused uses of the \@ pseudo-
variable to be mis-parsed as comments has been fixed.

28

Sourcery G++ Lite for ARM uClinux

Crash when generating vector code. A bug that sometimes caused the compiler to crash when
invoked with the —ftree-vectorize option has been fixed.

Propagation of Thumb symbol attributes. Symbols referring to Thumb functions on ARM
targets now have their Thumb attribute correctly propagated to any aliases defined with .set or
.symver.

Linking of non-ELF images. A linker bug that could cause a crash when linking non-ELF objects
for ARM targets has been fixed.

Invalid load instructions. A bug in the compiler which caused it to generate invalid assembly
(e.g. Idrd rO, [#0, r2]) has been fixed.

VFPv3/NEON debug information. A bug in the compiler which caused it to generate incorrect
debug information for code using VFPv3/NEON registers has been fixed. The debugger is now able
unable to locate and display values held in these registers.

ARMV6-M system instructions. Anassembler bug that caused some ARMv6-M system instruc-
tions to be incorrectly rejected has been fixed. The affected instructions are msr, mrs, yield, wFi,
wfe and sev.

Assembly of Thumb-2 load/store multiple instructions. The Thumb-2 1dm and stm assembly
mnemonics are now assembled to Idr and str instructions when a single register is transferred,
as specified in the Thumb-2 Architecture Supplement.

Conditional Thumb-2 branch instructions. A linker bug that could cause objects involving
conditional Thumb-2 branch instructions to be incorrectly rejected has been fixed.

Alignment bug fix. A bug has been fixed that formerly caused incorrect code to be generated in
some situations for copying structure arguments being passed by value. The incorrect code caused
alignment errors on stack accesses on some targets.

3.3.13. Changes in Sourcery G++ Lite 2007g1-3

Initial release. This is the initial release for ARM uClinux.

29

Chapter 4
Installation and Configuration

This chapter explains how to install Sourcery G++ Lite. You will learn how to:
1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

30

Installation and Configuration

4.1. Terminology

Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target systemrefers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-ucl inuxeabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

4.2. System Requirements

4.2.1. Host Operating System Requirements
This version of Sourcery G++ supports the following host operating systems and architectures:

» Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using 1A32,
AMDG64, and EM64T processors.

e GNU/Linux systems using 1A32, AMD64, or EM64T processors, including Debian 3.0 (and later),
Red Hat Enterprise Linux 3 (and later), and SUSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the default
/bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions. To install
Sourcery G++ Lite on these systems, you must make Zbin/sh a symbolic link to one of
the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

4.2.2. Host Hardware Requirements
In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

31

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPD IR environment variable, or /tmp if that is not set.

4.2.3. Target System Requirements

See Chapter 3, Sourcery G++ Litefor ARM uClinux for requirements that apply to the target system.

4.3. Downloading an Installer

If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 4.4, “Installing Sourcery G++ Lite”.

If you have a Sourcery G++ subscription (or evaluation), then you can log into the Sourcery G++
Portal' to download your Sourcery G++ toolchain(s). CodeSourcery also makes some toolchains
available to the general public from the Sourcery G++ web site?. These publicly available toolchains
do not include all the functionality of CodeSourcery's product releases.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the . exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the . tar .bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

4.4. Installing Sourcery G++ Lite

The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

4.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -1 console command-line option. For example:

> /path/to/package.exe -1 console

4.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
Start the graphical installer by invoking the executable shell script:

> /bin/sh _/path/to/package.-bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite.

! https://support.codesourcery.com/GNUToolchain/
2 http://www.codesourcery.com/gnu_toolchains/

32

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/

Installation and Configuration

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-1 console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

4.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package - tar._bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-2009q1.

First, uncompress the package file:

> bunzip2 /path/to/package.tar._bz2

Next, create the directory in which you wish to install the package:
> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

4.5. Installing Sourcery G++ Lite Updates

If you have already installed an earlier version of Sourcery G++ Lite for ARM uClinux on your
system, it is not necessary to uninstall it before using the installer to unpack a new version in the
same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM uClinux target all begin with arm-
uclinuxeabi. This means that you can install Sourcery G++ for multiple target systems in the same
directory without conflicts.

4.6. Uninstalling Sourcery G++ Lite

The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered.

4.6.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

For Windows hosts other than Microsoft Windows Vista, select Start, then Control Panel.
Select Add or Remove Programs. Scroll down and click on Sourcery G++ for ARM

33

Installation and Configuration

uClinux. Select Change/Remove and follow the on-screen dialogs to uninstall Sourcery G++
Lite.

On Microsoft Windows Vista hosts, select Start, then Settings and finally Control Panel.
Select the Uninstall a program task. Scroll down and double click on Sourcery G++
for ARM uClinux. Follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory with the -i console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

4.6.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. The arm-ucl inuxeabi directory located in the install directory
will be removed entirely by the uninstaller. Please back up any changes you have made to this direct-
ory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++
Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the —i console command-line option.

4.6.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a . tar .bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

4.7. Setting up the Environment

As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

4.7.1. Setting up the Environment on Microsoft Windows Hosts

4.7.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd . exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

34

Installation and Configuration

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd . exe shell and running:
> arm-uclinuxeabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2009g1-163.
4.7.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hel 1o. c corresponds to the Windows path c - \cygwin\
home\user\hello. c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

4.7.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH
If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

35

Installation and Configuration

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-uclinuxeabi/man.

You can test that your PATH is set up correctly by using the following command:
> arm-uclinuxeabi-g++
and verifying that you receive the message:

arm-uclinuxeabi-g++: no input Ffiles

36

Chapter 5
Using Sourcery G++ from the
Command Line

This chapter demonstrates the use of Sourcery G++ Lite from the command line. This
chapter assumes you have installed Sourcery G++ Lite as described in Chapter 4, Installation
and Configuration.

37

Using Sourcery G++ from the Command Line

5.1. Building an Application

This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-uclinuxeabi, as in-
dicated by the arm-uclinuxeabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named main . c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
it (n == 0)
return 1;
return n * factorial (n - 1);

}
int main Q) {
int i;
int n;
for (i = 0; 1 < 10; ++i) {
n = factorial (i);
printf ('factorial(%d) = %d\n', 1, n);
}

return O;

}

Compile and link this program using the command:
> arm-uclinuxeabi-gcc -o factorial main.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-uclinuxeabi-gcc with arm-uclinuxeabi-g++.)

5.2. Running Applications on the Target System
To run your program on a uClinux target system, use the command:
> factorial

You should see:

factorial(0) =1
factorial(1l) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(b5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial (9) = 362880

38

Using Sourcery G++ from the Command Line

5.3. Running Applications from GDB

You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

5.3.1. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 6, Sourcery G++ Debug
Sorite for detailed information about the supported devices.

You can start the Sprite directly from within GDB:
(gdb) target remote | arm-uclinuxeabi-sprite argunents

Refer to Section 6.2, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

5.3.2. Connecting to an External GDB Server

Sourcery G++ Lite includes a program called gdbserver that can be used to debug a program running
on a remote ARM uClinux target. Follow the instructions in Chapter 3, Sourcery G++ Lite for ARM
uClinux to install and run gdbserver on your target system.

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host :port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

39

Chapter 6
Sourcery G++ Debug Sprite

This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite is provided for debugging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and boards supported by the
Sprite for ARM uClinux.

40

Sourcery G++ Debug Sprite

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM uClinux. This Sprite is provided
to allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 6.2, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Note for Linux/uClinux users

The Debug Sprite provided with Sourcery G++ Lite allows remote debugging of the Linux
or uClinux kernel running on the target. For remote debugging of application programs,
you should use gdbserver instead. See Chapter 3, Sourcery G++ Litefor ARM uClinux for
details about how to install and run gdbserver on the target.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

6.1. Probing for Debug Devices

Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the —i option:

> arm-uclinuxeabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
(Sourcery G++ Lite Sourcery G++ Lite 2009ql1-163)
armusb: [speed=<n:0-7>] ARMUSB device
armusb:/// - ARMUSB Device
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 6.2, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

6.2. Invoking Sourcery G++ Debug Sprite

The Debug Sprite is invoked as follows:
> arm-uclinuxeabi-sprite [options] device-url board-file

The devi ce- ur | specifies the debug device to use to communicate with the board. It follows the
standard format:

41

Sourcery G++ Debug Sprite

schene:schene-specific-part [?devi ce-opti ons]
Most device URL schemes also follow the regular format:
schene:[//host nane:[port]]/pat h[?devi ce- opti ons]

The meanings of host nane, por t, pat h and devi ce- opt i ons parts depend on the schene
and are described below. The following schemes are supported in Sourcery G++ Lite for ARM uC-
linux:

rdi Use an RDI debugging device. Refer to Section 6.4, “Remote Debug Interface
Devices”.

Fflashpro Use a FlashPro debugging device. Refer to Section 6.5, “Actel FlashPro Devices”.

The optional ?devi ce- opt i ons portion is allowed in all schemes. These allow additional device-
specific options of the form nane=val ue. Multiple options are concatenated using &.

Theboar d- fi | e specifies an XML file that describes how to initialize the target board. If boar d-

fil e refersto afile (via a relative or absolute pathname), it is read. Otherwise, boar d-fi | e can
be a board name, and the toolchain’s board directory is searched for a matching file. See Section 6.7,
“Supported Board Files” for the list of supported boards, or invoke the Sprite with the —b option to
list the available board files. You can also write a custom board file; see Section 6.8, “Board File
Syntax” for more information.

6.3. Sourcery G++ Debug Sprite Options

The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of boar d- f i | e files in the board config directory.

-h Print a list of options and their meanings. A list of devi ce- ur| syntaxes
is also shown.

-1 Print a list of the accessible devices. If a devi ce-url is also specified,

only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the devi ce- ur | . For
each discovered device, the devi ce- ur | is printed along with a description
of that device.

-1 [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-uclinuxeabi-sprite ... command, you do not
need this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-V Print additional messages.

42

Sourcery G++ Debug Sprite

If any of —b, -1 or —h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

6.4. Remote Debug Interface Devices

Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the devi ce- ur | is specified as follows:

rdi:[///][?devi ce-opti ons]
The following devi ce- opt i ons are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=confi gfil e Specifyafile containing configuration information for| i br ary.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=val ue pairs. Consult the
documentation of your RDI library for details.

6.5. Actel FlashPro Devices

On Windows hosts, Sourcery G++ Lite supports FlashPro devices used with Actel Cortex-M1 devel-
opment Kits.

For FlashPro devices, the devi ce- ur | has the following form:
Fflashpro:[//usb12345/][?jtagclock=rat e]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the — i switch, as follows:

> arm-uclinuxeabi-sprite -1 flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
r at e is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

6.5.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-uclinuxeabi-sprite -i
Fflashpro: [jtagclock=<n:93750-4000000>] FlashPro device

43

Sourcery G++ Debug Sprite

flashpro://usb12345/ - FlashPro Device

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

6.6. Debugging a Remote Board

You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board.

To use this mode, you must start the Sprite with the —1 option and specify the port on which you
want it to listen. For example:

> arm-uclinuxeabi-sprite -1 :10000 devi ce-url board-file
starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host 10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

6.7. Supported Board Files

The Sourcery G++ Debug Sprite for ARM uClinux includes support for the following target boards.
Specify the appropriate boar d- f i | e as an argument when invoking the sprite from the command
line.

Board Config

Altera Cyclone Il Cortex-M1|cycloneiii-cml
ARMulator (RDI) armulator

6.8. Board File Syntax

The boar d- f i | e can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-uclinuxeabi/lib/boards directory
in the installation. Refer to the files in that directory for examples.

The file's DTD is:
<I-- Board description Files
Copyright (c) 2007-2009 CodeSourcery, Inc.

THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

44

Sourcery G++ Debug Sprite

You may not use or distribute this file without the express
written permission of CodeSourcery or its authorized

distributor. This file is licensed only for use with
Sourcery G++. No other use is permitted.
-—>

<IELEMENT board
(properties?, feature?, initialize?, memory-map?)>
<IELEMENT properties
(description?, property*)>

<IELEMENT initialize
(write-register | write-memory | delay
| wait-until-memory-equal | wait-until-memory-not-equal)* >

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT

write-register EMPTY>
write-register
address CDATA #REQUIRED
value CDATA
bits CDATA
write-memory EMPTY>
write-memory
address CDATA #REQUIRED
value CDATA
bits CDATA
delay EMPTY>

delay

time CDATA #REQUIRED>

#REQUIRED
#IMPLIED>

#REQUIRED
#IMPLIED>

wait-until-memory-equal EMPTY>

<IATTLIST wait-until-memory-equal
address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
<IELEMENT wait-until-memory-not-equal EMPTY>
<IATTLIST wait-until-memory-not-equal
address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
<IELEMENT memory-map (memory-device)*>
<IELEMENT memory-device (property*, description?, sectors*)>

<IATTLIST

<IELEMENT
<IELEMENT
<IATTLIST
<IELEMENT
<IATTLIST

memory-device

address CDATA
#REQUIRED
#REQUIRED

device CDATA

CDATA
CDATA

size
type

description (#PCDATA)>
property (#PCDATA)>

property name CDATA #REQUIRED>

sectors EMPTY>
sectors

#REQUIRED

#IMPLIED>

45

Sourcery G++ Debug Sprite

size CDATA #REQUIRED
count CDATA #REQUIRED>

<IENTITY % gdbtarget SYSTEM *gdb-target.dtd'>

%gdbtarget;

All values can be provided in decimal, hex (with a Ox prefix) or octal (with a O prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must

use a ms or us suffix.

The following elements are available:

<board>

<properties>

<initialize>

<feature>

<memory-map>

This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vTp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arml1, and
cortex.

The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

46

Sourcery G++ Debug Sprite

<memory-device>

<write-register>

<wr ite-memory>

<delay>

<description>

<property>

This element specifies a region of memory. It has four attributes:
address, size, typeanddevice. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The devi ce attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

This element encapsulates a human-readable description of its enclosing
element.

The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

47

Chapter 7
Next Steps with Sourcery G++

This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

48

Next Steps with Sourcery G++

7.1. Sourcery G++ Knowledge Base

The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal®.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

For more information on CodeSourcery support, see Chapter 2, Sourcery G++ Subscriptions.

7.2. Manuals for GNU Toolchain Components

Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-ucl inuxeabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-uclinuxeabi/man/manl
Then you can invoke man as:
> man ./arm-uclinuxeabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 4.7, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a —=—hellp option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

! https://support.codesourcery.com/GNUToolchain/

49

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Sourcery G++ Lite Licenses
	1.1. Licenses for Sourcery G++ Lite Components
	1.2. Sourcery G++ Software License Agreement

	Chapter 2 Sourcery G++ Subscriptions
	2.1. About Sourcery G++ Subscriptions
	2.2. Accessing your Sourcery G++ Subscription Account

	Chapter 3 Sourcery G++ Lite for ARM uClinux
	3.1. Library Configurations
	3.1.1. Included Libraries
	3.1.2. Library Selection

	3.2. Using Sourcery G++ Lite for ARM uClinux
	3.2.1. Using VFP Floating Point
	3.2.1.1. Enabling Hardware Floating Point
	3.2.1.2. NEON SIMD Code
	3.2.1.3. Half-Precision Floating Point
	3.2.1.3.1. Representations
	3.2.1.3.2. C and C++ Usage
	3.2.1.3.3. Hardware and Library Support

	3.2.2. ABI Compatibility
	3.2.3. Building uClinux Applications
	3.2.4. GDB Server

	3.3. Sourcery G++ Lite Release Notes
	3.3.1. Changes in Sourcery G++ Lite 2009q1-163
	3.3.2. Changes in Sourcery G++ Lite 2009q1-118
	3.3.3. Changes in Sourcery G++ Lite 2008q3-68
	3.3.4. Changes in Sourcery G++ Lite 2008q3-42
	3.3.5. Changes in Sourcery G++ Lite 2008q3-9
	3.3.6. Changes in Sourcery G++ Lite 2008q1-152
	3.3.7. Changes in Sourcery G++ Lite 2008q1-126
	3.3.8. Changes in Sourcery G++ Lite 2008q1-102
	3.3.9. Changes in Sourcery G++ Lite 2007q3-51
	3.3.10. Changes in Sourcery G++ Lite 2007q3-33
	3.3.11. Changes in Sourcery G++ Lite 2007q1-21
	3.3.12. Changes in Sourcery G++ Lite 2007q1-10
	3.3.13. Changes in Sourcery G++ Lite 2007q1-3

	Chapter 4 Installation and Configuration
	4.1. Terminology
	4.2. System Requirements
	4.2.1. Host Operating System Requirements
	4.2.2. Host Hardware Requirements
	4.2.3. Target System Requirements

	4.3. Downloading an Installer
	4.4. Installing Sourcery G++ Lite
	4.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	4.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	4.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	4.5. Installing Sourcery G++ Lite Updates
	4.6. Uninstalling Sourcery G++ Lite
	4.6.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	4.6.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	4.6.3. Uninstalling a Compressed Archive Installation

	4.7. Setting up the Environment
	4.7.1. Setting up the Environment on Microsoft Windows Hosts
	4.7.1.1. Setting the PATH
	4.7.1.2. Working with Cygwin

	4.7.2. Setting up the Environment on GNU/Linux Hosts

	Chapter 5 Using Sourcery G++ from the Command Line
	5.1. Building an Application
	5.2. Running Applications on the Target System
	5.3. Running Applications from GDB
	5.3.1. Connecting to the Sourcery G++ Debug Sprite
	5.3.2. Connecting to an External GDB Server

	Chapter 6 Sourcery G++ Debug Sprite
	6.1. Probing for Debug Devices
	6.2. Invoking Sourcery G++ Debug Sprite
	6.3. Sourcery G++ Debug Sprite Options
	6.4. Remote Debug Interface Devices
	6.5. Actel FlashPro Devices
	6.5.1. Installing FlashPro Windows drivers

	6.6. Debugging a Remote Board
	6.7. Supported Board Files
	6.8. Board File Syntax

	Chapter 7 Next Steps with Sourcery G++
	7.1. Sourcery G++ Knowledge Base
	7.2. Manuals for GNU Toolchain Components

