Sourcery G++ Lite
ColdFire GNU/Linux
Sourcery G++ Lite 4.4-54
Getting Started

((ODESOURCERY

Sourcery G++ Lite: ColdFire GNU/Linux: Sourcery G++ Lite
4.4-54: Getting Started

CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009 CodeSourcery, Inc.

All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents

P ACE .t iv
1. INteNdEd AUIENCE .. .oeviieeeie e et v
2. OFQANIZALION ...ttt et Y
3. Typographical CONVENTIONSuuiiiiiiieeiii et vi
Lo QUICK SEAMT ..ottt e e e e e et et e e e ae 1
1.1, Installation and SEt-UPc..uiiiiiiiiiii e 2
1.2. Configuring Sourcery G++ Lite for the Target SyStemoccoiiiiiiiiiieiiiiineennns 2
1.3. BUIldiNG YOUT PrOGramcoouuiiiiiiii ettt e 2
1.4. Running and Debugging YOUr PrOgramoveeuuuuneeiriieeiiiiae et eennens 2
2. Installation and CoNfIQUIATIONuiiiiiiiiiiii e 4
2.1, TEIMINOIOQY . ..eeitieeeiit et e e ettt e eeee 5
2.2, SYStem REQUITEIMENESeeutiieiiii et 5
2.3. Downloading an INSEAlIEriiiiii e 6
2.4, Installing SOUrCEry G+ LIteuiiiiiiii e 6
2.5. Installing Sourcery G++ Lite UPJatesuuviiiiiiiiiiiiiieeeii e 9
2.6. Setting up the ENVIFONMENTiiii e 10
2.7. Uninstalling SOUICEry G+ Litecoouuiiiiiiiiiiiiii e 11
3. Sourcery G++ Lite for COldFire GNU/LINUXuuiiiiiiiiiiiiiie e 13
3.1. Included Components and FEATUIESuiiiiiiiieiiii e 14
3.2, Library Configurationsieeeiiiieeeii e 14
3.3. Target Kernel REQUIFEMENTSuiiiiiiiieiiiii et 15
3.4. Using Sourcery G++ Lite on GNU/LINUX Targetsuvvviiiiiiieiiiiinieeiiiineeeiiinnnen 16
3.5. Using GDB Server for Debuggingoovvviiiiiiiiieiii e 18
3.8, USING OPENMP ...t 19
4. Using Sourcery G++ from the Command Lineccoouiiiiiiiiiniiiiieeec e 21
4.1. Building an ApplICAtIoNuiiiiiii e 22
4.2. Running Applications on the Target SYStEMooeiiiiiiiiiiiiiie e 22
4.3. Running Applications from GDBuoiiiiiiiiiiiii e 23
5. Sourcery G+ Debug SPIite .. .coeeiiiiiii 24
5.1. Probing for DebUQG DEVICESuuiiiiiiiieiiii e 25
5.2. Invoking Sourcery G++ Debug SPriteoviiiiiiiiiiiii e 26
5.3. Sourcery G++ Debug Sprite OptioNSuiiiiiiiiiiiiiie e 26
5.4, P&E DEBVICES ...ttt 27
5.5. Command Converter SEIVEr DEVICESuuiiiiiiiiiiiiiiie et 29
5.6. Turbo BDM Light COIdFire DEVICESccuuuniiiiiiiieiiiiie et 31
5.7. Open SoUrce BDM DEVICESccouuueiiiiiieiiiii ettt 33
5.8. Debugging @ ReEMOte BOAITuiiiiiiiiiiiiii e 33
5.9. Implementation DetailScoouiiiiiiiiiii e 34
5.10. Supported Board Filescooouiiiiiiii 35
5.11. Board File SYNTAXcoouuniiiiiiiie e 35
6. Next Steps With SOUICEIY G .oouuiiiiiiii e 39
6.1. Sourcery G+ SUDSCHIPLIONSuiiiiiiieiiii e 40
6.2. Sourcery G++ KNOWIedge BaSeuiiiiiiiiiiiiiiiiecei e 41
6.3. Manuals for GNU Toolchain COMPONENTSuuiiiiiieiiiiieee e 41
A. Sourcery G++ Lite ReleaSe NOTESvuiiiiiiiiiieiii e 43
A.1. Changes in Sourcery G++ Lite for ColdFire GNU/LINUXc.cooviiiiiiiieiiiiineeeen, 44
B. SOUICErY Gt Lite LICENSES ... ettt ettt e e e e e e eaeas 50
B.1. Licenses for Sourcery G++ Lite COMPONENTSouviiiiiiniiiiiiieiiiieeci e 51
B.2. Sourcery G++ Software License AGreemeNtvivvereiiiiiiiieeiii e 52

Preface

This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

Preface

1. Intended Audience

This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface. If you
are an administrator installing Sourcery G++ Lite on a UNIX-like system for all of your users to use,
you should also be familiar with the package-management software (such as the Red Hat Package

Manager) for your system.

2. Organization

This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start”

Chapter 2, “Installation and Config-
uration”

Chapter 3, “Sourcery G++ Lite for
ColdFire GNU/Linux”

Chapter 4, “Using Sourcery G++
from the Command Line”

Chapter 5, “Sourcery G++ Debug
Sprite”

Chapter 6, “Next Steps with Sourcery
G++”

Appendix A, “Sourcery G++ Lite
Release Notes”

Appendix B, “Sourcery G++ Lite
Licenses”

This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

This chapter contains information about using Sourcery G++
Lite that is specific to ColdFire GNU/Linux targets. You
should read this chapter to learn how to best use Sourcery
G++ Lite on your target system.

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite is provided for debug-
ging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and
boards supported by the Sprite for ColdFire GNU/Linux.

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for ColdFire GNU/Linux. You
should read through these notes to learn about new features
and bug fixes.

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix

Preface

to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

3. Typographical Conventions

The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

pl acehol der Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

Vi

Chapter 1
Quick Start

This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

Quick Start

Sourcery G++ Lite for ColdFire GNU/Linux is intended for developers working on embedded
GNU/Linux applications. It may also be used for Linux kernel development and debugging, or to
build a GNU/Linux distribution.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step. Note that this checklist is also oriented towards application debugging
rather than kernel debugging.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for ColdFire GNU/Linux”.

1.1. Installation and Set-Up

Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site?, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System

Identify your target libraries. Sourcery G++ Lite supports libraries optimized for different targets.
Libraries are selected automatically by the linker, depending on the processor and other options you
have specified. Refer to Section 3.2, “Library Configurations” for details.

Install runtime libraries on your target machine. In order to run programs built with the
Sourcery G++ runtime libraries on target hardware, you must install these libraries, the Sourcery
G++ dynamic linker, and other runtime support files -- collectively referred to as the sysroot -- on
your GNU/Linux target system. Typically, this involves either using third-party tools to build a
complete root filesystem including the Sourcery G++ sysroot, or using special commands when
linking or running your program so it can find the sysroot installed in another location on the target.
Refer to Section 3.4, “Using Sourcery G++ Lite on GNU/Linux Targets” for full discussion of these
options.

1.3. Building Your Program

Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite.

1.4. Running and Debugging Your Program

The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

! http://www.codesourcery.com/gnu_toolchains/

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Quick Start

Run your program on the ColdFire GNU/Linux target. To run a program using the included
Sourcery G++ libraries, you must install the sysroot on the target, as previously discussed. Copy the
executable for your program to the target system. The method you use for launching your program
depends on how you have installed the libraries and built your program. In some cases, you may
need to invoke the Sourcery G++ dynamic linker explicitly. Refer to Section 3.4, “Using Sourcery
G++ Lite on GNU/Linux Targets” for details.

Debug your program on the target using GDB server. You can use GDB server on a remote
target to debug your program. When debugging a program that uses the included Sourcery G++ lib-
raries, you must use the gdbserver executable included in the sysroot, and similar issues with respect
to the dynamic linker as discussed previously apply. See Section 3.5, “Using GDB Server for Debug-
ging” for detailed instructions. Once you have started GDB server on the target, you can connect to
it from the debugger on your host system. Refer to Section 4.3, “Running Applications from GDB”
for instructions on remote debugging from command-line GDB.

Chapter 2
Installation and Configuration

This chapter explains how to install Sourcery G++ Lite. You will learn how to:
1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

Installation and Configuration

2.1. Terminology

Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target systemrefers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is m68k- 1 inux-gnu.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements

2.2.1. Host Operating System Requirements
This version of Sourcery G++ supports the following host operating systems and architectures:

» Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using 1A32,
AMDG64, and EM64T processors.

e GNU/Linux systems using 1A32, AMD64, or EM64T processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SUSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the default
/bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions. To install
Sourcery G++ Lite on these systems, you must make Zbin/sh a symbolic link to one of
the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements
In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPD IR environment variable, or /tmp if that is not set.

2.2.3. Target System Requirements

See Chapter 3, “Sourcery G++ Lite for ColdFire GNU/Linux” for requirements that apply to the
target system.

2.3. Downloading an Installer

If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web sitel. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal?. For more information about sub-
scriptions for Sourcery G++ product releases, see Section 6.1, “Sourcery G++ Subscriptions”.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the . exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the _bin extension. If installing on a RPM-based GNU/Linux
system you may download the . rpm file. You may also install from a compressed archive with the
-tar _bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite

The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

! http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Installation and Configuration

2 Sourcery G++ for ARM EABI M= B3
Sourcery G++ for ARM EABI Wizard

@ Welcome! Installamawhere will guide you thraugh the installation of Sourcery

) Important Infarmation G+ for ARM EABI.

O Choose Install Set Itis strangly recommended that you quit all programs befare
(@ choose Install Folder continuing with this installation.

© Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing... You may cancel this installation at any time by clicking the 'Cancel’

© Install Complete huttan.

Click the 'Next' huttan to proceed to the next screen. Ifyou want to
change something an a previous screen, click the ‘Previous' buttan.

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel | Erevious |

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

2 Sourcery G++ for ARM EABI (- [T =]

Choose Install Folder

G Welcome! Where Would You Like to Install?

G Impartant Information IC:'l,Program Files\CodeSourceryl Sourcery G++ I
& Choose Install Set

& Choose Install Folder

@ Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

Restore Default Folder | Choose...

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel | Frevious | INext |

Choose Install Folder. Select the pathname to your install directory.

Installation and Configuration

2 Sourcery G++ for ARM EABI

& wielcome!

& Important Infarmation

& Choose Install Set

& Choose Install Folder

@ Add to PATH?

& Choose Shorteut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

(& (onESouncea

M= B3
Choose Shortcut Folder

Where would you like to create product icons?

{~ In & new Program Group: ISourcery G++ For ARM EABL

{~ In an existing Program Group: IAccessories LI
" In the Start Menu

= On the Desktop

' In the Quick Launch Bar

.
¥ Other: IieSourcery'l,Sourcery G+ For ARM BB Choose... |

" Don't create icons

[~ Create Icons For Al Users

InstallAmpwhere by Macravision

Cancel |

Frevious |

Choose Shortcut Folder.

You can customize where the installer creates

shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

2 Sourcery G++ for ARM EABI

& wielcome!
& Important Infarmation
& Choose Install Set

I B3
Install Complete

fongratulations! Sourcery G++ For ARM EART
has been successfully installed to:

diicygwinthomesandralarmss3instal

& Choose Install Folder
@ Add to PATH?

& Choose Shorteut Folder
G Fre-Installation Summary
& Installing...

& Install Complete

Press "Done” to quit the installer,

(& (onESouncea

InstallAmpwhere by Macravision

Cancel |

Frevious |

You should see a screen similar to this after a successful
install.

Install Complete.
If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -1 console command-line option. For example:
> /path/to/package.exe -1 console
2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

Installation and Configuration

> /bin/sh _/path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-1 console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite on RPM-based GNU/Linux Systems

On a RPM-based system you should use RPM to install the provided package. Execute the following
command as root (administrator):

> rpm -ivh /path/to/package.rpm
To update an existing Sourcery G++ Lite installation, use:

> rpm -Uvh /path/to/package.rpm
2.4.4. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package . tar_bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-4_4.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:
> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates

If you have already installed an earlier version of Sourcery G++ Lite for ColdFire GNU/Linux on
your system, it is not necessary to uninstall it before using the installer to unpack a new version in
the same location. The installer detects that it is performing an update in that case.

To update a previous RPM installation of Sourcery G++ Lite, use rpm -U instead of rpm -i, as de-
scribed above.

Installation and Configuration

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ColdFire GNU/Linux target all begin
with m68k-linux-gnu. This means that you can install Sourcery G++ for multiple target systems in
the same directory without conflicts.

2.6. Setting up the Environment

As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd . exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd . exe shell and running:
> m68k-1inux-gnu-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 4.4-54.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hel 1o. c corresponds to the Windows path c - \cygwin\
home\user\hello. c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

10

Installation and Configuration

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH
If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-m68k- I 1nux-gnu/man.

You can test that your PATH is set up correctly by running the following command:
> m68k-linux-gnu-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 4.4-54.

2.7. Uninstalling Sourcery G++ Lite

The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

For Windows hosts other than Microsoft Windows Vista, select Start, then Control Panel.
Select Add or Remove Programs. Scroll down and click on Sourcery G++ for
ColdFire GNU/Linux. Select Change/Remove and follow the on-screen dialogs to uninstall
Sourcery G++ Lite.

11

Installation and Configuration

On Microsoft Windows Vista hosts, select Start, then Settings and finally Control Panel.
Select the Uninstall a program task. Scroll down and double click on Sourcery G++
for ColdFire GNU/Linux. Follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory with the -1 console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. The m68k- I inux-gnu directory located in the install directory
will be removed entirely by the uninstaller. Please back up any changes you have made to this direct-
ory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++
Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -1 console command-line option.

2.7.3.Uninstalling Sourcery G++ Lite on RPM-based GNU/Linux Systems

If you installed Sourcery G++ Lite from an RPM package, you should also use RPM to uninstall it.
Execute the following command as root (administrator):

> rpm -e sourceryg++-m68k-1inux-gnu
2.7.4. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a . tar .bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Chapter 3
Sourcery G++ Lite for ColdFire

GNU/Linux

This chapter contains information about features of Sourcery G++ Lite that are specific to
ColdFire GNU/Linux targets. You should read this chapter to learn how to best use Sourcery
G++ Lite on your target system.

13

Sourcery G++ Lite for ColdFire GNU/Linux

3.1. Included Components and Features

This section briefly lists the important components and features included in Sourcery G++ Lite for
ColdFire GNU/Linux, and tells you where you may find further information about these features.

Component |Version ‘Notes

GNU programming tools

GNU Compiler Collection 44.1 Separate manual included.

GNU Binary Utilities 2.19.51 Includes assembler, linker, and other utilities.

Separate manuals included.

Debugging support and simulators

GNU Debugger 6.8.50 Separate manual included.

Sourcery G++ Debug Sprite for|4.4-54 Provided for kernel debugging only. See Chapter 5,

ColdFire “Sourcery G++ Debug Sprite”.

CCS Server N/A Included with the Sourcery G++ Debug Sprite. See
Section 5.5, “Command Converter Server
Devices”.

GDB Server N/A Included with GDB. See Section 3.5, “Using GDB

Server for Debugging”.

Target libraries

GNU C Library 2.10 Separate manual included.

Linux Kernel Headers 2.6.30

OpenMP N/A

Other utilities

GNU Make N/A Build support on Windows hosts.
GNU Core Utilities N/A Build support on Windows hosts.

3.2. Library Configurations

Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Each multilib corresponds to a sysroot directory that contains the files that should be installed on
the target system. The sysroot contains the dynamic linker used to run your applications on the target
as well as the libraries. Refer to Section 3.4, “Using Sourcery G++ Lite on GNU/Linux Targets” for
instructions on how to install and use these support files on your target GNU/Linux system. You can
find the sysroot directories provided with Sourcery G++ in the m68k- I inux-gnu/ I ibc directory
of your installation. In the tables below, the dynamic linker pathname is given relative to the corres-
ponding sysroot.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ColdFire GNU/Linux.

14

Sourcery G++ Lite for ColdFire GNU/Linux

MCF547X/8X

Command-line option(s): default

Sysroot subdirectory: ./

Dynamic linker: lib/ld.so.1

Notes: This multilib supports Freescale MCF547X and MCF548X cores.
MCF54455

Command-line option(s): -mcpu=54455

Sysroot subdirectory: m54455/

Dynamic linker: lib/ld.so.1

Notes: This multilib supports Freescale MCF5441x and MCF5445x cores.

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> m68k-1inux-gnu-gcc -print-multi-directory options. ..

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Target Kernel Requirements

The primary source for Linux kernels for ColdFire targets is the set of LTIB distributions provided
on the Freescale web sitel; the ColdFire changes have not yet been incorporated into the upstream
Linux kernel sources. At the time this release was prepared, the kernel in the current LTIB distribution
for MCF5445x was based on 2.6.23 kernel, while that for MCF547x/8x was based on 2.6.25. These
are the minimal versions for the respective platforms.

This release of Sourcery G++ Lite for ColdFire GNU/Linux includes NPTL (Native POSIX Thread
Library) support in the GNU C Library. Supporting NPTL requires that you apply an additional patch
to the kernel sources and rebuild the kernel. This release of Sourcery G++ is not compatible with
older or unpatched kernels, even if your applications do not use NPTL features.

You can find the required kernel patch and instructions for applying it in the Sourcery G++ Know-
ledge Base?.

L http://www.freescale.com/
2 https://support.codesourcery.com/GNUToolchain/kbentry52

15

http://www.freescale.com/
https://support.codesourcery.com/GNUToolchain/kbentry52
https://support.codesourcery.com/GNUToolchain/kbentry52
http://www.freescale.com/
https://support.codesourcery.com/GNUToolchain/kbentry52

Sourcery G++ Lite for ColdFire GNU/Linux

3.4. Using Sourcery G++ Lite on GNU/Linux
Targets

In order to run and debug programs produced by Sourcery G++ on a GNU/Linux target, you must
install runtime support files on the target. You may also need to set appropriate build options so that
your executables can find the correct dynamic linker and libraries at runtime.

The runtime support files, referred to as the sysroot, are found in the m68k-1inux-gnu/libc
directory of your Sourcery G++ Lite installation. The sysroot consists of the contents of the etc,
lib, sbin, and usr directories. There may be other directories in m68k-linux-gnu/libc
that contain additional sysroots customized for particular combinations of command-line compiler
flags, or multilibs. Refer to Section 3.2, “Library Configurations” for a list of the included multilibs
in this version of Sourcery G++ Lite, and the corresponding sysroot directory pathnames.

Note for Windows Host Users

The sysroots provided in Windows host packages for Sourcery G++ are not directly usable
on the Linux target because of differences between the Windows and Linux file systems.
Some files that are hard links, or copies, in the sysroot as installed on the Windows file
system should be symbolic links on the Linux target. Additionally, some files in the sysroot
which should be marked executable on the Linux target are not marked executable on
Windows. If you intend to use the sysroot provided with Sourcery G++ on a Windows host
system as the basis for your Linux target filesystem, you must correct these issues after
copying the sysroot to the target. If you are a Professional Edition customer and need assist-
ance with these modifications, please contact CodeSourcery's support team.

There are three choices for installing the sysroot on the target:

* You can install the files in the filesystem root on the target (that is, installing the files directly in
/etc/, /1ib/, and so on). All applications on the target then automatically use the Sourcery
G++ libraries. This method is primarily useful when you are building a GNU/Linux root filesystem
from scratch. If your target board already has a GNU/Linux filesystem installed, overwriting the
existing C library files is not recommended, as this may break other applications on your system,
or cause it to fail to boot.

* You can install the sysroot in an alternate location and build your application with the -rpath
and --dynamic-linker linker options to specify the sysroot location.

* You can install the sysroot in an alternate location and explicitly invoke your application through
the dynamic linker to specify the sysroot location. If you are just getting started with Sourcery
G++ Lite, this may be the easiest way to get your application running, but this method does not
support use of the debugger.

Setting the environment variable LD_L 1BRARY_PATH on the target is not sufficient, since executables
produced by Sourcery G++ depend on the Sourcery G++ dynamic linker included in the sysroot as
well as the Sourcery G++ runtime libraries.

3.4.1. Installing the Sysroot

If you are modifying an existing system, rather than creating a new system from scratch, you should
place the sysroot files in a new directory, rather than in the root directory of your target system.

16

Sourcery G++ Lite for ColdFire GNU/Linux

If you choose to overwrite your existing C library, you may not be able to boot your system. You
should back up your existing system before overwriting the C library and ensure that you can restore
the backup even with your system offline.

When running Sourcery G++ on a GNU/Linux host, you have the alternative of installing the sysroot
on the target at the same pathname where it is installed on the host system. One way to accomplish
this is to NFS-mount the installation directory on both machines in the same location, rather than to
copy files.

In many cases, you do not need to copy all of the files in the sysroot. For example, the usr/include
subdirectory contains files that are only needed if you will actually be running the compiler on your
target system. You do not need these files for non-native compilers. You also do not need any .o
or . afiles; these are used by the compiler when linking programs, but are not needed to run programs.
You should definitely copy all - so files and the executable files in usr/bin and sbin.

You need to install the sysroot(s) corresponding to the compiler options you are using for your ap-
plications. The tables in Section 3.2, “Library Configurations” tell you which sysroot directories
correspond to which compiler options. If you are unsure what sysroot is being referenced when you
build your program, you can identify the sysroot by adding -V to your compiler command-line options,
and looking at the —-sysroot= pathname in the compiler output.

3.4.2. Using Linker Options to Specify the Sysroot Location

If you have installed the sysroot on the target in a location other than the file system root, you can
use the -rpath and --dynamic- 1 inker linker options to specify the sysroot location.

If you are using Sourcery G++ from the command line, follow these steps:

1. First find the correct sysroot directory, dynamic linker, and library subdirectory for your selected
multilib. Refer to Section 3.2, “Library Configurations”. In the following steps, sysr oot isthe
absolute path to the sysroot directory on the target corresponding to your selected multilib. For
the default multilib, the dynamic linker path relative to the sysroot is Iib/1d.so.1, and the
library subdirectory is L'ib. This is used in the example below.

2. When invoking m68Kk-linux-gnu-gcc to link your executable, include the command-line options:

-WI, -rpath=sysr oot /lib:sysr oot Zusr/lib \
-WI,--dynamic-linker=sysroot /lib/ld.so.1

where sysr oot is the absolute path to the sysroot directory on the target corresponding to your
selected multilib.

3. Copy the executable to the target and execute it normally.

Note that if you specify an incorrect path for ——dynamic-1inker, the common failure mode
seen when running your application on the target is similar to

> _/factorial
-/factorial: No such file or directory

or

> _/factorial
./factorial: bad ELF interpreter: No such file or directory

17

Sourcery G++ Lite for ColdFire GNU/Linux

This can be quite confusing since it appears from the error message as if it is the ./factorial
executable that is missing rather than the dynamic linker it references.

3.4.3. Specifying the Sysroot Location at Runtime

You can invoke the Sourcery G++ dynamic linker on the target to run your application without
having to compile it with specific linker options.

To do this, follow these steps:

1. Build your application on the host, without any additional linker options, and copy the executable
to your target system.

2. Find the correct sysroot directory, dynamic linker, and library subdirectory for your selected
multilib. Refer to Section 3.2, “Library Configurations”. In the following steps, sysr oot isthe
absolute path to the sysroot directory on the target corresponding to your selected multilib. For
the default multilib, the dynamic linker is lib/1d.so.1, and the library subdirectory is I'ib.
This is used in the example below.

3. On the target system, invoke the dynamic linker with your executable as:

> sysroot /lib/1ld.so.1 \
--library-path sysroot /lib:sysroot Zusr/lib \
/ pat h/ t o/ your - execut abl e

where sysr oot is the absolute path to the sysroot directory on the target corresponding to your
selected multilib.

Invoking the linker in this manner requires that you provide either an absolute pathname to your
executable, or a relative pathname prefixed with ./. Specifying only the name of a file in the
current directory does not work.

3.5. Using GDB Server for Debugging

The GDB server utility provided with Sourcery G++ Lite can be used to debug a GNU/Linux applic-
ation. While Sourcery G++ runs on your host system, gdbserver and the target application run on
your target system. Even though Sourcery G++ and your application run on different systems, the
debugging experience when using gdbserver is very similar to debugging a native application.

3.5.1. Running GDB Server

The GDB server executables are included in the sysroot in ABI-specific subdirectories of
sysr oot Zusr. Use the executable from the sysroot and library subdirectory that match your pro-
gram. See Section 3.2, “Library Configurations” for details.

You must copy the sysroot to your target system as described in Section 3.4.1, “Installing the Sysroot”.
You must also copy the executable you want to debug to your target system.

If you have installed the sysroot in the root directory of the filesystem on the target, you can invoke
gdbserver as:

> gdbserver :10000 program argl arg2 ...

18

Sourcery G++ Lite for ColdFire GNU/Linux

where pr ogr amis the path to the program you want to debug and ar g1 ar g2 ... are the argu-
ments you want to pass to it. The 10000 argument indicates that gdbserver should listen for
connections from GDB on port 10000. You can use a different port, if you prefer.

If you have installed the sysroot in an alternate directory, invoking gdbserver becomes more com-
plicated. You must build your application using the link-time options to specify the location of the
sysroot, as described in Section 3.4.2, “Using Linker Options to Specify the Sysroot Location”. You
must also invoke gdbserver itself using the dynamic linker provided in the Sourcery G++ sysroot,
as described in Section 3.4.3, “Specifying the Sysroot Location at Runtime”. In other words, the
command to invoke gdbserver in this case would be similar to:

> sysroot /lib/ld.so.1 \
—--library-path sysroot /lib:sysroot Zusr/lib \
sysr oot Zusr/lib/bin/gdbserver :10000 program argl arg2 ...

3.5.2. Connecting to GDB Server from the Debugger

You can connect to GDB server by using the following command from within GDB:
(gdb) target remote target 10000

where t ar get is the host name or IP address of your target system.

When your program exits, gdbserver exits too. If you want to debug the program again, you must
restart gdbserver on the target. Then, in GDB, reissue the target command shown above.

3.5.3. Setting the Sysroot in the Debugger

In order to debug shared libraries, GDB needs to map the pathnames of shared libraries on the target
to the pathnames of equivalent files on the host system. Debugging of multi-threaded applications
also depends on correctly locating copies of the libraries provided in the sysroot on the host system.

In some situations, the target pathnames are valid on the host system. Otherwise, you must tell GDB
how to map target pathnames onto the equivalent host pathnames.

In the general case, there are two GDB commands required to set up the mapping:

(gdb) set sysroot-on-target tar get - pat hnane
(gdb) set sysroot host - pat hnane

This causes GDB to replace all instances of the t ar get - pat hname prefix in shared library path-
names reported by the target with host - pat hnane to get the location of the equivalent library on
the host.

If you have installed the sysroot in the root filesystem on the target, you can omit the set sysroot-
on-target command, and use only set sysroot to specify the location on the host system.

Refer to Section 3.4.1, “Installing the Sysroot” for more information about installing the sysroot on
the target. Note that if you have installed a stripped copy of the provided libraries on the target, you
should give GDB the location of an unstripped copy on the host.

3.6. Using OpenMP

Sourcery G++ Lite for ColdFire GNU/Linux includes the GNU OpenMP library (libgomp). This is
an API that supports multi-platform shared-memory parallel programming.

19

Sourcery G++ Lite for ColdFire GNU/Linux

To compile programs that use OpenMP features, use the —fopenmp command-line option. For more
information about OpenMP, see http://www.openmp.org/.

20

Chapter 4
Using Sourcery G++ from the

Command Line

This chapter demonstrates the use of Sourcery G++ Lite from the command line.

21

Using Sourcery G++ from the Command Line

4.1. Building an Application

This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is m68k-linux-gnu, as in-
dicated by the m68k-linux-gnu command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named main . c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
it (n == 0)
return 1;
return n * factorial (n - 1);

}

int main Q) {
int i;
int n;
for (i = 0; 1 < 10; ++i) {
n = factorial (i);
printf ('factorial(%d) = %d\n', 1, n);
}

return O;

}

Compile and link this program using the command:
> m68k-l1inux-gnu-gcc -o factorial main.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace m68k-linux-gnu-gcc with m68k-linux-gnu-g++.)

4.2.Running Applications on the Target System

You may need to install the Sourcery G++ runtime libraries and dynamic linker on the target system
before you can run your application. Refer to Chapter 3, “Sourcery G++ Lite for ColdFire GNU/Linux”
for specific instructions.

To run your program on a GNU/Linux target system, use the command:
> factorial

You should see:

factorial(0) =1
factorial(l) =1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(b5) = 120
factorial(6) = 720
factorial(7) = 5040

22

Using Sourcery G++ from the Command Line

40320
362880

factorial (8)
factorial (9)

4.3. Running Applications from GDB

You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.3.1. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 5, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:
(gdb) target remote | m68k-linux-gnhu-sprite argunents

Refer to Section 5.2, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

4.3.2. Connecting to an External GDB Server

Sourcery G++ Lite includes a program called gdbserver that can be used to debug a program running
on a remote ColdFire GNU/Linux target. Follow the instructions in Chapter 3, “Sourcery G++ Lite
for ColdFire GNU/Linux” to install and run gdbserver on your target system.

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

23

Chapter 5
Sourcery G++ Debug Sprite

This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite is provided for debugging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and boards supported by the
Sprite for ColdFire GNU/Linux.

24

Sourcery G++ Debug Sprite

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ColdFire GNU/Linux. This Sprite
is provided to allow debugging of programs running on a bare board. You can use the Sprite to debug
a program when there is no operating system on the board, or for debugging the operating system
itself. If the board is running an operating system, and you wish to debug a program running on that
0S, you should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 5.2, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Note for Linux/uClinux users

The Debug Sprite provided with Sourcery G++ Lite allows remote debugging of the Linux
or uClinux kernel running on the target. For remote debugging of application programs,
you should use gdbserver instead. See Chapter 3, “Sourcery G++ Lite for ColdFire
GNU/Linux” for details about how to install and run gdbserver on the target.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

5.1. Probing for Debug Devices

Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the —i option:

> m68k-l1inux-gnu-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ColdFire Debug Sprite
(Sourcery G++ Lite Sourcery G++ Lite 4.4-54)
pe: [speed=<n:0-31>&memory-timeout=<n:0-99>] P&E Adaptor
pe://USBMultilink/PE6011970 - USB1 : USB-ML-CF Rev C (PE6011970)
pe://CycloneProMaxEthernet/10.0.0.85 - 10.0.0.85 : cyclonel
ccs: [timeout=<n>&speed=<n>] CCS Protocol
ccs://3$Host:$Port/$Chain_position - CCS address
tblcf: TBLCF Interface
tblcf://:0/ - TBLCF device
osbdm: Open Source BDM
osbdm://0/ - OSBDM device

This shows that P&E, Command Converter Server (CCS), Turbo BDM Light ColdFire (TBLCF),
and Open Source BDM (OSBDM) devices are supported. Two P&E devices are detected, one TBLCF
device, and one OSBDM device. Although CCS devices are supported, they cannot be autodetected.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

25

Sourcery G++ Debug Sprite

5.2. Invoking Sourcery G++ Debug Sprite

The Debug Sprite is invoked as follows:
> m68k-linux-gnu-sprite [options] device-url board-file

The devi ce- ur | specifies the debug device to use to communicate with the board. It follows the
standard format:

schenme:schene- specifi c-part [?devi ce-opti ons]
Most device URL schemes also follow the regular format:
schene:[//host nane:[port]]/pat h[?devi ce- opti ons]

The meanings of host nane, por t, pat h and devi ce- opti ons parts depend on the schene
and are described below. The following schemes are supported in Sourcery G++ Lite for ColdFire
GNU/Linux:

pe Use a P&E Microcomputer Systems debugging device. Refer to Section 5.4, “P&E
Devices”.
ccs Use a debugging device controlled by the Command Converter Server (CCS) utility, such

as a CodeWarrior Ethernet TAP or USB TAP. Refer to Section 5.5, “Command Converter
Server Devices”.

tblcf Use a Turbo BDM Light ColdFire (e.g. Axiom AxBDM) debugging device. Refer to
Section 5.6, “Turbo BDM Light ColdFire Devices”.

osbdm Use an Open Source BDM debugging device. Refer to Section 5.7, “Open Source BDM
Devices”.

The optional ?devi ce- opt i ons portion is allowed in all schemes. These allow additional device-
specific options of the form nane=val ue. Multiple options are concatenated using &.

The boar d-fi | e specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If boar d- f i | e refers to a file (via a relative
or absolute pathname), it is read. Otherwise, boar d- f i | e can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 5.10, “Supported Board Files” for the
list of supported boards, or invoke the Sprite with the —b option to list the available board files. You
can also write a custom board file; see Section 5.11, “Board File Syntax” for more information about
the file format.

Both the devi ce-url and board-fil e command-line arguments are required to correctly
connect the Sprite to a target board.

5.3. Sourcery G++ Debug Sprite Options

The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of boar d- f i | e files in the board config directory.
-h Print a list of options and their meanings. A list of devi ce- ur| syntaxes
is also shown.

26

Sourcery G++ Debug Sprite

-1 [host]: port

-q

-V

Print a list of the accessible devices. If a devi ce- url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the devi ce- ur | . For
each discovered device, the devi ce- ur | isprinted along with a description
of that device.

Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | m68k-linux-gnu-sprite ... command, you do not
need this option.

Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

Do not print any messages.

Print additional messages.

If any of -b, —i or —h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

5.4. P&E Devices

P&E debug devices are supported. The P&E device partitions the devi ce- ur | as follows:

pe:[//type[:nunber J]1[/key][?devi ce- opti ons]]

The various parts are:

type Specify the debug device type. The following debug device types are supported

o USBMultilink

¢ CycloneProMaxusB

* CycloneProMaxSerial

¢ CycloneProMaxEthernet

+ ParallelPortCable

* PCIBDMLiIghtning

nunber Specify the debug device number. Be aware that a device's number depends on whether
other devices are concurrently accessed (this is a feature of the underlying P&E library).

key Some P&E devices report unique device keys. This option allows you to select a device
by its key, independently of USB device numbering.

Not all the separate parts of the devi ce- ur | are required to uniquely define a particular device.
If you specify more than required, the URL must be self-consistent. If you specify fewer components
than required, the Sprite uses the first P&E device found that satisfies the specified components.

27

Sourcery G++ Debug Sprite

The key is the most robust mechanism for specifying a device, as it uses the unique ID of a particular
P&E device. It is immune from renumbering issues, should boards be unplugged or inserted.

The following devi ce- opt i ons are permitted:

speed=speed Specify the speed of the connection. This is a clock divider value,
so higher values are slower connection speeds. Refer to the P&E
documentation for valid speed settings for your board.

memory-timeout=ti meout Some boards report memory errors for every access within a
certain time of a genuine memory error. This option instructs the
Sprite to compensate for this and retry a memory access that re-
ports an error within the specified time of a prior error. If you
need to use this option you need to increase GDB's protocol
timeout by specifying set remotetimeout Natthe GDB
prompt.

debug=file Write P&E debug informationto fi | e.
5.4.1. Connection Problems

If you get a message “Cannot load P&E library 'UNIT_CFZ.DLL™ or “Cannot load P&E library
'libUnit_cfz.so™, you probably have not installed the P&E device software. This software is included
with Sourcery G++ Lite; see Section 5.4.2, “Installing P&E Drivers” for installation instructions.

The message “Cannot find a matching debug device” means that no P&E device could be found
matching the devi ce- ur | that you used. Use the —i option to enumerate the devices available.

The message “Cannot force background mode” can occur if you connect at too high a speed. Try
slowing the connection by increasing the speed= option in the device URL.

5.4.2. Installing P&E Drivers

On Windows, the P&E driver is installed by Sourcery G++ Lite. If the P&E driver installation fails
(for example, with an error about missing files), it may mean that you already have another copy of
the drivers previously installed on your computer. Note that P&E drivers are not removed automat-
ically when uninstalling Sourcery G++ Lite; you must do that separately using Add/Remove
Software from the Windows control panel.

To reinstall the drivers on Windows, follow these steps:
1. Complete the Sourcery G++ Lite installation.
2. Turn off your system and disconnect all P&E devices.

3. Reboot the system and use Add/Remove Software, available through the Windows control
panel, to check for and remove any previously-installed P&E drivers.

4. Run libexec/m68k-1inux-gnu-post-install/sprite-drivers/pe_drivers_
install _bat to reinstall the drivers.

5. Turn off your system and connect all P&E devices.

6. Reboot the system and start using Sourcery G++ L.ite.

28

Sourcery G++ Debug Sprite

On Linux, the P&E driver is a loadable kernel module that has to be compiled for your system. You
need kernel headers and a native C compiler for your system. The package is pe_driver_ver_
324 811.tar.gz and is in the libexec/m68k-I1inux-gnu-post-install/
sprite-drivers subdirectory of your Sourcery G++ Lite installation. You should unpack that
file, and use the setup - sh script to build and install it. You should manually remove all files of a
previous install before building this module.

These drivers are provided by P&E Microcomputer Systems.

5.5. Command Converter Server Devices

The Sourcery G++ Debug Sprite supports devices such as the CodeWarrior Ethernet TAP and USB
TAP that are controlled by the Command Converter Server (CCS) utility. You need to start CCS
separately before connecting to the debug device from GDB; see Section 5.5.1, “Starting CCS”.

The Sprite partitions the CCS devi ce- ur| as follows:
ccs:[//host [:port]][/chai npos][?devi ce-options]

The host and por t indicate the location of the CCS port to connect to. The chai npos (a number)
indicates where the ColdFire debug device is in the CCS chain.

The following devi ce- opt i ons are permitted:

speed=speed Specify the speed used to connect to the target. This is specified in KHz by
default. You can use MHz and KHz suffixes.

timeout=ti neout This specifies the timeout, in seconds, used for communication with the
Command Converter Server.

As an example, if CCS is listening on port localhost:41475, connect GDB to the board with:

(gdb) target remote | \
m68k-linux-gnu-sprite ccs://localhost:41475 m54455evb

5.5.1. Starting CCS

CCS is included with Sourcery G++ Lite; you do not need to have the CodeWarrior tools installed.
You can find the CCS executable in the m68k-1inux-gnu/ccs/bin subdirectory of your
Sourcery G++ Lite installation.

The server can be started by clicking on the CCS icon, or by entering ccs on the command line. You
can use the -nog¥x option to use its command-line interface rather than having it create a GUI
window.

Use the following commands to initialize the server:

% delete all

% config port port

% config cc device

% config client all

The por t number is the TCP/IP port the server listens on, and is what you should use in the Sprite's
URI. The devi ce indicates what target device should be used. For USB devices use utap for
COP/ONnCE and utap_dpi for BDM or DPI. For Ethernet devices use powertap for COP/OnCE

29

Sourcery G++ Debug Sprite

and powertap_dpi for BDM or DPI. If you have multiple devices of you can append a :ser i al -
nunber to the USB devi ce name. The eight-digit ser i al - nunber is located on the underside
of the TAP device just after the revision information. For Ethernet devices append the device's IP
address.

In summary, to connect to a COP/OnCE target using an Ethernet TAP:
% config cc powertap:1.2.3.4

To connect to a BDM or DPI target using an Ethernet TAP:

% config cc powertap dpi:1.2.3.4

To connect to a COP/OnCE target using a USB TAP:

% config cc utap

To connect to a BDM or DPI target using a USB TAP:

% config cc utap_dpi

You can use the config save command to save the configuration for later use. The show cc command
shows you the current configuration. The show port command shows you the port number CCS is
serving.

5.5.2. Common CCS Errors

Here are some common error messages and their causes:

Cable disconnected The target board is not powered up, the board hardware is
faulty or in a bad state or the jumper settings are incorrect.

CC not present The required Command Converter is not present. You did not
use utap_bdmor utap_dpi to connect CCS to a BDM or
DPI TAP device connection.

Core not responding CCS is no longer has control of the target system. The board
hardware is faulty or in a bad state, the board initialization
settings are incorrect or there is another debugger configura-
tion problem.

USB open failure For a Windows host, the USB driver on the host computer is
hung. Unplug/replug the USB tap, or reboot the host PC if the
problem persists. This might also happen if the USB drivers
were not installed. You may install USB drivers manually
from m68k-1 inux-gnu\ccs\drivers subdirectory of
your Sourcery G++ Lite installation.

For a Linux host this can occur if the permissions are not set
correctly. Try running CCS as root, and if this resolves the
problem, review the instructions in m68k-11nux-gnu/
ccs/drivers/usb subdirectory of your Sourcery G++
Lite installation for setting up USB permissions.

Maximum number of Command You have tried to reconfigure without first deleting the current
Converters reached configuration.

30

Sourcery G++ Debug Sprite

Cannot reset to debug mode This can indicate that the clock speed is too high. Try a lower
clock speed with the speed= option in the device URL.

5.6. Turbo BDM Light ColdFire Devices

Turbo BDM Light ColdFire (TBLCF) devices, such as the Axiom AXBDM device, are supported.
The TBLCF device type partitions the devi ce- ur | as follows:

tblcf:[//:nunber /]

The nunber indicates the number of the TBLCF interface to connect to, counting from zero upwards.
If the number is omitted, the default is to connect to the zeroth interface, which works well if you
have only one TBLCF device connected to your computer.

There are no further options for the TBLCF device.
If you are connecting via TBLCF from Windows, you may see a message like:
m68k-11nux-gnu-sprite:error: Couldn®t load libusb DLL

If this happens, you must install the driver for the TBLCF device, included with Sourcery G++ Lite.
See Section 5.6.1, “Installing TBLCF (AxBDM) Windows Drivers” for installation instructions.

If you are connecting via TBLCF from Linux, you may see a message like:

m68k-l11nux-gnu-sprite:error: Error claiming interface \
(-1, permission denied)

If you see this message, consult Section 5.6.2, “Configuring TBLCF (AxBDM) Devices on Linux”
for configuration instructions.

5.6.1. Installing TBLCF (AxBDM) Windows Drivers

Before using a TBLCF device, you must install a driver. To install the TBLCF (AXxBDM) driver on
Windows, follow these steps:

1. Complete the Sourcery G++ Lite installation.

2. Runthe Add Hardware Control Panel. Click Yes, 1 have already connected the
hardware.

3. Select Add a new hardware device.
4. Select Install the hardware that 1 manually select from a list.
5. Select Show all devices.

6. Click Have Disk. Browse to libexec/m68k-Ilinux-gnu-post-install/
axbdm-drivers/axbdm. inf, then select AXBDM from the list on the following pane.

7. You will get warnings about the driver not being signed by Microsoft. This is expected.
8. Reboot the system when prompted and start using Sourcery G++ Lite.

Windows may auto-detect the TBLCF device when it is connected, and invoke the driver installation
dialog automatically. If you have already installed Sourcery G++ Lite, you may continue with the

31

Sourcery G++ Debug Sprite

dialog using steps similar to those outlined above. Otherwise, close the dialog, install Sourcery G++
Lite first, and then follow the above steps to install the driver.

5.6.2. Configuring TBLCF (AXxBDM) Devices on Linux

The method you should use for configuring the TBLCF device on Linux depends on whether your
machine is using udev or hotplug to manage USB device permissions. To determine which of these
your distribution uses, find out your kernel and udev version numbers as follows:

> uname -r
2.6.20

> udevinfo -V
udevinfo, version 108

A rule of thumb is that if your kernel version is less than 2.6.13 (2. 6. 20 in the example) or your
udev version is less than 059 (108 in the example), your machine uses hotplug to control USB device
permissions, else it uses udev. If this rule of thumb doesn't work for you, consult your operating
system vendor to determine which method your distribution uses.

Performing the following steps allows any user to access the TBLCF device, rather than just the su-
peruser (root). Running the Debug Sprite as root is technically possible, but is strongly discouraged.

5.6.2.1. Configuring TBLCF with udev

To configure udev to handle TBLCF permissions, first locate your udev rule configuration directory
(e.g. Zetc/udev/rules.d/). Asroot, create a file in that directory called 25-tblcf.rules
with the following contents:

BUS==""usb", SYSFS{idVendor}=="0425", SYSFS{idProduct}=="1001", \
MODE="'0666""

Note that this should be entered on one line, without the backslash. Once this file is created, plug in
the TBLCF device (if it is not already plugged in) then reboot your machine to make sure your
changes take effect.

5.6.2.2. Configuring TBLCF with hotplug

To configure hotplug to handle TBLCF permissions, you must create two files in your hotplug USB
configuration directory (e.g. Zetc/hotplug/ushb/) as root. The first file is named thlcf and
contains:

#1/bin/bash
/etc/hotplug/usb/tblcf
#
it ["${ACTION}" = "add™] && [-f "${DEVICE}"]
then
case ""$PRODUCT™ in
425/1001/%)
chmod 0666 "'${DEVICE}"

esac
i

The second file (in the same directory) is named tblcf.usermap and contains:

32

Sourcery G++ Debug Sprite

tblcft 0x0003 0x0425 0x1001 0x0000 0x0000 Ox00 0x00 0x00 0x00 \
0x00 0x00 0x00000000

Note that the above must be entered on one line, without the backslash. Create these files and plug
in your TBLCF device, if it is not already plugged in. Reboot your machine to make sure your changes
take effect.

5.6.2.3. Troubleshooting TBLCF Device Permissions

If you are having difficulties using the Debug Sprite as a non-root user, check that your udev or
hotplug configuration is working properly by ensuring that the TBLCF device has the right file per-
missions. To do this, first run the following command:

> Isusb -d 0x0425:0x1001
Bus 004 Device 002: ID 0425:1001 Motorola Semiconductors HK, Ltd

Note the bus and device number (004 and 002 above). Now, examine the permissions of the corres-
ponding device file as follows:

> Is -1 /proc/bus/usb/004/002
-rw-rw-rw- 1 root root 50 2007-11-02 12:12 /proc/bus/usb/004/002

If the file has permissions as shown, you should be able run the Debug Sprite as any user, and the
problem lies elsewhere. If the permissions are different, or there was no output from the Isusb com-
mand above, your configuration is not working properly. Ask CodeSourcery for further guidance.

5.7. Open Source BDM Devices

Open Source BDM (OSBDM) devices are supported. The OSBDM device type partitions the
devi ce-url as follows:

osbdm: [//nunber /]

The nunber indicates the number of the OSBDM interface to connect to, counting from zero upwards.
If the number is omitted, the default is to connect to the zeroth interface, which works well if you
have only one OSBDM device connected to your computer.

There are no further options for the OSBDM device.
If you are connecting via OSBDM from Windows, you may see a message like:

m68k-linux-gnu-sprite:error: Cannot load OSBDM library \
OSBDM-JM60.DLL"

If this happens, you must install the driver for the OSBDM device. You can obtain the driver from
the vendor of your OSBDM device.

As of this writing, there is not yet an OSBDM driver available for Linux hosts.

5.8. Debugging a Remote Board

You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the

33

Sourcery G++ Debug Sprite

machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the —1 option and specify the port on which you
want it to listen. For example:

> m68k-linux-gnu-sprite -1 :10000 devi ce-url board-file
starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host 10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base'.

5.9. Implementation Details

The Sourcery G++ Debug Sprite uses Background Debug Mode, which is supported by all ColdFire
cores. In most cases this is completely non-intrusive to the program being debugged. However, if
you are using the Sourcery G++ Debug Sprite to debug an operating system kernel (or program with
kernel-like features), some of the debugging operations can interact with the program being debugged.

5.9.1. Software Breakpoints

The Debug Sprite uses HALT instructions to implement software breakpoints and semihosting. On
execution of a HALT instruction, the Debug Sprite gains control. If the HALT instruction is one that
the Debug Sprite inserted itself, it reports a breakpoint to the host's GDB. Semihosting breakpoints
are detected by checking for the bit pattern Ox4e7b¥000, which corresponds to an unrealistic
movec %sp, 0 instruction. The semihosting operation will be performed and the program counter
adjusted to skip the ill-formed instruction. For all other HALT instructions GDB will report a
SIGTRAP.

If the program being debugged uses HALT instructions in an idle loop, each iteration of the idle loop
will cause such a SIGTRAP to be reported by GDB. If you want GDB to ignore these signals, enter
the following GDB command:

handle SIGTRAP nostop noprint nopass

As HALT is a privileged instruction, the Debug Sprite sets the UHE bit in the CSR so that user mode
programs do not raise a privilege violation exception on HALT execution.

5.9.2. Hardware Watchpoints

A single hardware watchpoint is implemented using ColdFire's TDR, AATR, ABLR & ABHR debug
registers (Trigger Definition Register, Address Attribute Trigger Register, Address Bus Low Register
and Address Bus High Register respectively). A range of addresses can watch for data read, write
Or access.

! https://support.codesourcery.com/GNUToolchain/kbentry132

34

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

Sourcery G++ Debug Sprite

Because of the way ColdFire implements the address range check, it is possible for an access to an
address just before the range, but whose final byte is within the watched range to be undetected. For
instance watching a single byte at address 4N+3 fails to trigger on 32 bit writes to address 4N or on
16 bit writes to address 4N+2.

5.9.3. Single Stepping

Single stepping uses the ColdFire single step feature. This is performed with the 1P 1 (Ignore Pending
Interrupts) bit set in the CSR. Without this bit set, single stepping an instruction when an interrupt
is pending stops at the first instruction of the ISR, which is undesirable. Thus single stepping a se-
quence of instructions does not process any interrupts. During continuous execution, interrupts are
not so inhibited, and ISRs are executed, if the remainder of the processor state allows them. GDB
commands that perform single stepping are step and stepi. Commands that perform continuous exe-
cution are continue, jump and finish. The next and nexti commands perform single stepping, except
when a function is called, in which case they perform a sequence of single steps to enter the called
function, followed by continuous execution for the bulk of the called function.

5.10. Supported Board Files

The Sourcery G++ Debug Sprite for ColdFire GNU/Linux includes support for the following target
boards. Specify the appropriate boar d- f i | e as an argument when invoking the sprite from the
command line.

Board Config

Freescale M54455EVB m54455evb
Freescale M54455EVB (Intel flash at CS0) |m54455evb-intel
Freescale M5485EVB m5485evb

5.11. Board File Syntax

The boar d- fi | e can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the m68k- 1 inux-gnu/lib/boards directory in
the installation. Refer to the files in that directory for examples.

The file's DTD is:

<I-- Board description files
Copyright (c) 2007-2009 CodeSourcery, Inc.

THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

You may not use or distribute this file without the express
written permission of CodeSourcery or its authorized
distributor. This file is licensed only for use with
Sourcery G++. No other use is permitted.

-——>

<IELEMENT board
(properties?, feature?, initialize?, memory-map?)>

35

Sourcery G++ Debug Sprite

<IELEMENT properties
(description?, property*)>

<IELEMENT initialize
(write-register | write-memory | delay
| wait-until-memory-equal | wait-until-memory-not-equal)* >

<IELEMENT

write-register EMPTY>

<IATTLIST write-register
address CDATA #REQUIRED
value CDATA #REQUIRED
bits CDATA #IMPLIED>
<IELEMENT write-memory EMPTY>
<IATTLIST write-memory
address CDATA #REQUIRED
value CDATA #REQUIRED
bits CDATA #IMPLIED>
<IELEMENT delay EMPTY>
<IATTLIST delay
time CDATA #REQUIRED>
<IELEMENT wait-until-memory-equal EMPTY>

<IATTLIST

wait-until-memory-equal

address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
<IELEMENT wait-until-memory-not-equal EMPTY>
<IATTLIST wait-until-memory-not-equal
address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
<IELEMENT memory-map (memory-device)*>
<IELEMENT memory-device (property*, description?, sectors*)>

<IATTLIST

memory-device

address CDATA #REQUIRED
size CDATA #REQUIRED
type CDATA #REQUIRED
device CDATA #IMPLIED>
<IELEMENT description (#PCDATA)>

<IELEMENT
<IATTLIST
<IELEMENT
<IATTLIST

property (#PCDATA)>

property name CDATA #REQUIRED>
sectors EMPTY>

sectors

size CDATA #REQUIRED
count CDATA #REQUIRED>

<IENTITY % gdbtarget SYSTEM *gdb-target.dtd'>
%gdbtarget;

All values can be provided in decimal, hex (with a Ox prefix) or octal (with a O prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must

use a ms or us suffix.

36

Sourcery G++ Debug Sprite

The following elements are available:

<board>

<properties>

<initialize>

<feature>

<memory-map>

<memory-device>

<write-register>

This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

cache This boolean property is used to indicate that the
target has a cache. This knowledge is necessary
to correctly write to a program'’s instruction stream.

floating-point This boolean property indicates whether floating
point registers are provided on the target.

The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

This element specifies a region of memory. It has four attributes:
address, size, typeanddevice. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The devi ce attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

It can also contain the following named <property> elements for addi-
tional flash-specific information:

system-clock This numeric property is used for cfm flash devices.
It specifies the target frequency, and is used to determ-
ine the flash frequency divider value.

page-size This numeric property is used for cfm flash devices.
It specifies the flash logical page size. When not
specified, the page size is set to 1K for the ColdFire
V1 devices and to 2K for the ColdFire \V2+ devices.

This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32. The address
may be specified as a number, or as a name. The following registers are

37

Sourcery G++ Debug Sprite

<wr ite-memory>

<delay>

<description>

<property>

available: AS1D, ACRO, ACR1, ACR1, ACR1, MMUBAR, VBR, ROMBARO,
ROMBAR1, FLASHBAR, RAMBARO, RAMBAR1, MPCR, EDRAMBAR,
SECMBAR, MBAR2, MBAR.

This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

This element encapsulates a human-readable description of its enclosing
element.

The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

38

Chapter 6
Next Steps with Sourcery G++

This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

39

Next Steps with Sourcery G++

6.1. Sourcery G++ Subscriptions

CodeSourcery offers two levels of Sourcery G++ subscriptions. Professional Edition subscriptions
include unlimited support, with no per-incident fees. CodeSourcery's support is provided by the same
engineers who build Sourcery G++, and covers questions about installing and using Sourcery G++,
the C and C++ programming languages, and all other topics relating to Sourcery G++. CodeSourcery
provides updated versions of Sourcery G++ on demand to resolve critical problems reported by
Professional Edition subscribers. Personal Edition subscriptions do not include support, but do include
access to updates as long as the subscription remains active.

Subscription editions of Sourcery G++ also include many additional features not included in the free
Lite editions:

Sourcery G++ IDE. The Sourcery G++ IDE, based on Eclipse, provides a fully visual envir-
onment for developing applications, including an automated project builder, syntax-highlighting
editor, and a graphical debugging interface. The debugger provides features especially useful to
embedded systems programmers, including the ability to step through code at both the source and
assembly level, view registers, and examine stack traces. CodeSourcery's enhancements to Eclipse
include improved support for hardware debugging via JTAG or ICE units and complete integration
with the rest of Sourcery G++.

Debug Sprites. Sourcery G++ Debug Sprites provide hardware debugging support using JTAG
and ICE devices. On some systems, Sourcery G++ Sprites can automatically program flash memory
and display control registers. Debug Sprites included in Lite editions of Sourcery G++ include
only a subset of the functionality of the Sprites in the subscription editions.

CS3. CS3 provides a uniform, cross-platform approach to board initialization and interrupt
handling on bare-metal ELF and EABI platforms. Subscription versions of Sourcery G++ include
CS3 support for an expanded set of boards. In addition, the Sourcery G++ Board Builder allows
you to extend the power of CS3 to cover custom board definitions. The Board Builder is fully in-
tegrated with the Sourcery G++ IDE and Debug Sprites.

CodeSourcery C Library. Subscription versions of Sourcery G++ for bare-metal targets include
the CodeSourcery C Library, a proprietary library implementation that is optimized to be smaller
and faster than the Newlib C library included with Lite editions of Sourcery G++.

QEMU Instruction Set Simulator. The QEMU instruction set simulator can be used to run
— and debug — programs even without target hardware. Most bare-metal configurations of
Sourcery G++ include QEMU and linker scripts targeting the simulator. Configurations of Sourcery
G++ for GNU/Linux targets include a user-space QEMU emulator that runs on Linux hosts.

Sysroot Utilities. Subscription editions of Sourcery G++ include a set of sysroot utilities for
GNU/Linux targets. These utilities simplify use of the Sourcery G++ dynamic linker and shared
libraries on the target and also support remote debugging with gdbserver.

GNU/Linux Prelinker. For select GNU/Linux target systems, Sourcery G++ includes the
GNU/Linux prelinker. The prelinker is a postprocessor for GNU/Linux applications which can
dramatically reduce application launch time. CodeSourcery has modified the prelinker to operate
on non-GNU/Linux host systems, including Microsoft Windows.

Library Reduction Utility. Sourcery G++ also includes a Library Reduction Utility for
GNU/Linux targets. This utility allows the GNU C Library to be relinked to include only those
functions used by a given collection of binaries.

40

Next Steps with Sourcery G++

« Additional Libraries. For some platforms, additional run-time libraries optimized for particular
CPUs are available. Pre-built binary versions of the libraries with debug information are also
available to subscribers.

» Additional Documentation. Subscription customers receive expanded access to the Sourcery
G++ Knowledge Base, covering many more tips, howtos, and application notes to help you make
the best use of Sourcery G++.

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portall. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

6.2. Sourcery G++ Knowledge Base

The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal®.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

6.3. Manuals for GNU Toolchain Components

Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-m68k- 1 i nux-gnu/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-m68k-1inux-gnu/man/manil
Then you can invoke man as:
> man ./m68k-linux-gnu-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

! https://support.codesourcery.com/GNUToolchain/
2 https://support.codesourcery.com/GNUToolchain/

41

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Next Steps with Sourcery G++

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a ——hellp option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

42

Appendix A
Sourcery G++ Lite Release Notes

This appendix contains information about changes in this release of Sourcery G++ Lite for

ColdFire GNU/Linux. You should read through these notes to learn about new features and
bug fixes.

43

Sourcery G++ Lite Release Notes

A.l. Changes in Sourcery G++ Lite for ColdFire
GNU/Linux

This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 4.4-54

gdbserver bug fix. A bug has been fixed that caused gdbserver to crash when debugging programs
using thread-local storage without other multi-threading features.

@ LE fix. A bug has been fixed in the processing of @FI LE command-line options by GCC,
GDB, and other tools. The bug caused any options in FI LE following a blank line to be ignored.

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

Stack unwinding bug fix. A compiler bug that resulted in incorrect stack unwinding information
has been fixed. The bug interfered with the next and finish commands when debugging, and could
cause programs using C++ exception handling to crash.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has been
fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

gdbserver multi-threaded debugging fix. A bug has been fixed that prevented gdbserver from
exiting after debugging a multi-threaded program.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.2. Changes in Sourcery G++ Lite 4.4-29

ColdFire MCF5441x support. Sourcery G++ now supports the Freescale MCF5441x (Modelo)
family of microprocessors. To compile for these CPUs use the -mcpu=54410, -mcpu=54415,
-mcpu=54416, -mcpu=54417, and -mcpu=54418 command-line options.

Linux kernel headers update. Linux kernel header files have been updated to version 2.6.30.
Among other things this fixes assembler failures with functions that convert integers to different
endianness.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

EGLIBC version 2.10. Sourcery G++ Lite for ColdFire GNU/Linux now includes the EGLIBC
version 2.10 library, based on GNU C Library version 2.10. This is a major upgrade from the version
2.5 included in previous releases of Sourcery G++, and brings GLIBC support up to date on the
ColdFire platform. New features introduced by this upgrade include support for NPTL (Native POSIX

44

Sourcery G++ Lite Release Notes

Thread Library) and related features such as thread-local storage. For more information about other
EGLIBC changes, see http://www._eglibc.org/news#eglibc_2 10.

Linux kernel update required. As a consequence of upgrading to a more current version of
EGLIBC, Sourcery G++ Lite now requires more recent Linux kernel versions and an additional
kernel patch. Refer to Section 3.3, “Target Kernel Requirements” for more information.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

Remote debugging hardware watchpoint bug fix. =~ A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

GDB internal warning fix. A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Code generation for string literals. A defect in the generation of code for string literals has been
corrected. Multiple occurrences of the same string literal in the same file sometimes resulted in in-
correct code.

Configuration file required for Debug Sprite. When invoking the Sourcery G++ Debug Sprite
from the command line, it is now required to specify a board configuration file argument. This change
eliminates a source of confusion and errors resulting from accidental omission of the configuration
file argument, since recent improvements to debugger functionality depend on properties specified
in the configuration file. Refer to Chapter 5, “Sourcery G++ Debug Sprite” for more details on in-
voking the Sourcery G++ Debug Sprite from the command line.

GDB segmentation fault bug fix. A bug in the Sourcery G++ Debug Sprite that sometimes
caused GDB to crash when inspecting register contents has been fixed.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Startup code debugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

-frenove-| ocal - st ati cs optimization. The -fremove-local-statics optimization
is now enabled by default at -02 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8]:).

45

Sourcery G++ Lite Release Notes

GCC version 4.4.1. Sourcery G++ Lite for ColdFire GNU/Linux is now based on GCC version
4.4.1. For more information about changes from GCC version 4.3 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.4/changes.html.

Linker map address sorting. The map generated by the linker ~Map option now lists symbols
sorted by address.

A.1.3. Changes in Sourcery G++ Lite 4.3-210

GDB finish internal error. A bug has been fixed that caused a GDB internal error when using
the finish command. The bug occurred when debugging optimized code.

GCC version 4.3.3. Sourcery G++ Lite for ColdFire GNU/Linux is now based on GCC version
4.3.3. This is a bug fix update to GCC. For more information about changes from GCC version 4.3.2
that was included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the —a option) on Windows hosts has been fixed.

Incorrect code when using - fal i gn-1 abel s . A bug that caused the compiler to generate
incorrect code for swi tch statements when the —fal ign-1abel's option is used has been fixed.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Internal compiler error with - 3 or - f predi cti ve- conmoni ng. A bug has been fixed
that caused internal compiler errors when compiling some code with -03 or
-fpredictive-commoning.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eqand xor_eq
were used in contexts where the preprocessor converts their names to strings.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

Sprite’s failure to reset the target. A bug has been fixed that sometimes caused the Sourcery
G++ Debug Sprite to fail to reset the target when using the multiple sequential connection feature
(enabled via the -m command-line option). This problem was specific to running the Debug Sprite
on Microsoft Windows hosts.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Loop optimization improvements. A new option, -Fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

46

Sourcery G++ Lite Release Notes

Overloaded function resolution. The C++ compiler now correctly diagnoses an error when the
second operand of a comma expression is an unresolved set of overloaded functions. Previously, it
incorrectly used the context of the comma expression to resolve the function.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Remote debugging connection auto-retry. The target remote command within GDB now uses
a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding race
conditions when the remote GDB stub or GDB server is launched simultaneously with GDB. The
auto-retry behavior is enabled by default; refer to the GDB manual for details.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug_ str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "nane"
outside of ELF segments for such binaries; the warning has now been fixed.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

m68k-linux-gnu-objcopy bug fix. A bug has been fixed that caused m68k-linux-gnu-objcopy
to issue an error when generating output in the Intel HEX format and using
--change-section-Ima to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

Sprite crash on error. A bug has been fixed which sometimes caused the Sourcery G++ Debug
Sprite to crash when it attempted to send an error message to GDB.

Errors when inserting breakpoints. A GDB bug has been fixed that caused errors of the form
“function® found in filenane psymtab but not In symtab when setting a
breakpoint on f unct i on. This error commonly occurred when setting breakpoints on functions
provided by the C library.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPD IR variables were set to
a suitable directory.

Open Source BDM ColdFire support. Initial support for Open Source BDM (OSBDM) probes
has been added to the Sourcery G++ Debug Sprite. Both integrated and stand-alone OSBDM probes
are supported. Using this feature requires installed OSBDM drivers, which are currently only available
for Windows hosts. For more information, see Section 5.7, “Open Source BDM Devices”.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

47

Sourcery G++ Lite Release Notes

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can"t do that without a process to debug. when debugging a core dump file.

Internal compiler error with - f r enove-1 ocal - stati cs. Aninternal compiler error that
occurred when using the —Fremove-local -statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

Persistent remote server connections. A GDB bug has been fixed that caused the target exten-
ded-remote command to fail to tell the remote server to make the connection persistent across program
invocations.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

Pointer-to-member functions. A bug has been fixed that caused the C++ compiler to crash when
compiling a pointer-to-member function reference without an explicit & operator. This syntax is al-
lowed only when the -fms-extensions command-line option is used.

A.1.4. Changes in Sourcery G++ Lite 4.3-43

Printing casted valuesin GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Binutils support for DWARF Version 3. The addr2line command now supports binaries con-
taining DWARF 3 debugging information. The Id command can display error messages with source
locations for input files containing DWARF 3 debugging information.

P&E driver updates. The P&E drivers for Windows and Linux have been updated to version
3.32-920.

Connecting to the target using a pipe. A bug in GDB's target remote | pr ogr amcommand
has been fixed. When launching the specified pr ogr amfailed, the bug caused GDB to crash, hang,
or give a message Error: No Error.

Modifying control registers. A bug has been fixed which prevented writes to processor and
device control registers when using the Sourcery G++ Debug Sprite.

P&E ColdFire V1 support. The P&E drivers now include support for V1 ColdFire devices.

Code generation bug fix. A bug has been fixed that caused the compiler to generate invalid code
which was rejected by the assembler with an operands mismatch error.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

48

Sourcery G++ Lite Release Notes

A.1.5. Changes in Sourcery G++ Lite 4.3-11

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, the new
find command to search memory, the new /m (mixed source and assembly) option to the disassemble
command, and the new macro define command to define C preprocessor macros interactively.

Remote debugging improvements. The gdbserver utility now supports a more efficient com-
munications protocol that can reduce latency during remote debugging. The protocol optimizations
are enabled automatically when gdbserver operates over a TCP connection. Refer to the GDB
manual for more information.

Output files removed on error. ~ When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

Cache control. A bug in the Debug Sprite has been fixed that previously caused failures when
stepping over breakpoints on V3, V4 and VV4e cores when caching is enabled.

Processor status register display. When displaying the status register, both GDB and the Sourcery
G++ IDE now list the names of flags that are set. Previously, a decimal number was displayed.

GCC version 4.3.2. Sourcery G++ Lite for ColdFire GNU/Linux is now based on GCC version
4.3.2. For more information about changes from GCC version 4.2 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Sprite communication improvements. The Sourcery G++ Debug Sprite now uses a more efficient
protocol for communicating with GDB. This can result in less latency when debugging, especially
when running the Sprite on a remote machine over a network connection.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

A.1.6. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ColdFire GNU/Linux,
please refer to the Getting Started guide packaged with those releases.

49

Appendix B
Sourcery G++ Lite Licenses

Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary. This appendix
explains what licenses apply to your use of Sourcery G++ Lite. You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

50

Sourcery G++ Lite Licenses

B.1. Licenses for Sourcery G++ Lite Compon-
ents

The table below lists the major components of Sourcery G++ Lite for ColdFire GNU/Linux and the
license terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

Component License

GNU Compiler Collection GNU General Public License 3.0 *

GNU Binary Utilities GNU General Public License 3.0 2

GNU Debugger GNU General Public License 3.0 3
Sourcery G++ Debug Sprite for ColdFire |CodeSourcery License

CCS Server CCS Server License

GNU C Library GNU Lesser General Public License 2.1 *
Linux Kernel Headers GNU General Public License 2.0 °

GNU Make GNU General Public License 2.0 ©

GNU Core Utilities GNU General Public License 2.0 /

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.
Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-m68k- 1 inux-gnu-examp les subdirectory. These examples are not covered
by the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples
are provided by CodeSourcery as is with no warranty of any kind, including implied warranties of
merchantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

Lhitp:/Amvww.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/Igpl-2.1.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
6 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
7 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

51

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Sourcery G++ Lite Licenses

B.2. Sourcery G++™ Software License Agree-
ment

1.

Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and
CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
*“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

5.1. Sourcery G++ Debug Sprite for P&E Devices. You may use the Sourcery G++
Debug Sprite for P&E only in conjunction with ColdFire microprocessors and with de-
bugging devices produced by P&E Microcomputer Systems.

5.2. Sourcery G++ Debug Sprite for CCS Debugging Devices. = The Sourcery G++
Debug Sprite for CCS includes the CodeWarrior Connection Server Dynamic Linked

52

Sourcery G++ Lite Licenses

10.

11.

Library (“CCS DLL”) from Freescale Semiconductor, Inc. You may use the CCS DLL
only in conjunction with Sourcery G++ on a Windows or Linux-hosted platform. You
may not translate, reverse engineer, decompile, or disassemble the CCS DLL, except
to the extent applicable law specifically prohibits such restriction. If You are a U.S.
Government end user, the CCS DLL is “restricted computer software” and is subject to
FAR 52.227-19(c)(1) and (c)(2).

“Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Sarted Guide
provides an overview of which license applies to different components. Definitive licensing
information for each “free software” or “open source” component is available in the relevant
source file.

CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
—--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,

53

Sourcery G++ Lite Licenses

12.

13.

14,

15.

16.

PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
ISAUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TOYOU ORANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

Licensee Outside The U.S. IfYou are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

54

Sourcery G++ Lite Licenses

17.

18.

19.

20.

21.

22.

Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

55

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite on RPM-based GNU/Linux Systems
	2.4.4. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling Sourcery G++ Lite on RPM-based GNU/Linux Systems
	2.7.4. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for ColdFire GNU/Linux
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Target Kernel Requirements
	3.4. Using Sourcery G++ Lite on GNU/Linux Targets
	3.4.1. Installing the Sysroot
	3.4.2. Using Linker Options to Specify the Sysroot Location
	3.4.3. Specifying the Sysroot Location at Runtime

	3.5. Using GDB Server for Debugging
	3.5.1. Running GDB Server
	3.5.2. Connecting to GDB Server from the Debugger
	3.5.3. Setting the Sysroot in the Debugger

	3.6. Using OpenMP

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications from GDB
	4.3.1. Connecting to the Sourcery G++ Debug Sprite
	4.3.2. Connecting to an External GDB Server

	Chapter 5 Sourcery G++ Debug Sprite
	5.1. Probing for Debug Devices
	5.2. Invoking Sourcery G++ Debug Sprite
	5.3. Sourcery G++ Debug Sprite Options
	5.4. P&E Devices
	5.4.1. Connection Problems
	5.4.2. Installing P&E Drivers

	5.5. Command Converter Server Devices
	5.5.1. Starting CCS
	5.5.2. Common CCS Errors

	5.6. Turbo BDM Light ColdFire Devices
	5.6.1. Installing TBLCF (AxBDM) Windows Drivers
	5.6.2. Configuring TBLCF (AxBDM) Devices on Linux
	5.6.2.1. Configuring TBLCF with udev
	5.6.2.2. Configuring TBLCF with hotplug
	5.6.2.3. Troubleshooting TBLCF Device Permissions

	5.7. Open Source BDM Devices
	5.8. Debugging a Remote Board
	5.9. Implementation Details
	5.9.1. Software Breakpoints
	5.9.2. Hardware Watchpoints
	5.9.3. Single Stepping

	5.10. Supported Board Files
	5.11. Board File Syntax

	Chapter 6 Next Steps with Sourcery G++
	6.1. Sourcery G++ Subscriptions
	6.2. Sourcery G++ Knowledge Base
	6.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for ColdFire GNU/Linux
	A.1.1. Changes in Sourcery G++ Lite 4.4-54
	A.1.2. Changes in Sourcery G++ Lite 4.4-29
	A.1.3. Changes in Sourcery G++ Lite 4.3-210
	A.1.4. Changes in Sourcery G++ Lite 4.3-43
	A.1.5. Changes in Sourcery G++ Lite 4.3-11
	A.1.6. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement

