
The Red Hat newlib C Library

Full Con�guration

libc 1.16.0
December 2007

Steve Chamberlain
Roland Pesch
Red Hat Support
Je� Johnston

sac@cygnus.com, pesch@cygnus.com, jjohnstn@redhat.com The Red Hat newlib C Library

Copyright c 1992, 1993, 1994-2004 Red Hat Inc.

`libc' includes software developed by the University of California, Berkeley and its contrib-
utors.

`libc' includes software developed by Martin Jackson, Graham Haley and Steve Chamber-
lain of Tadpole Technology and released to Cygnus.

`libc' uses oating-point conversion software developed at AT&T, which includes this copy-
right information:
� �

The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any purpose without fee
is hereby granted, provided that this entire notice is included in all copies of any software
which is or includes a copy or modi�cation of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PAR-
TICULAR PURPOSE.

 	

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions.

Chapter 1: Introduction 1

1 Introduction

This reference manual describes the functions provided by the Red Hat \newlib" version of
the standard ANSI C library. This document is not intended as an overview or a tutorial for
the C library. Each library function is listed with a synopsis of its use, a brief description,
return values (including error handling), and portability issues.

Some of the library functions depend on support from the underlying operating system and
may not be available on every platform. For embedded systems in particular, many of these
underlying operating system services may not be available or may not be fully functional.
The speci�c operating system subroutines required for a particular library function are
listed in the \Portability" section of the function description. See Chapter 12 [Syscalls],
page 265, for a description of the relevant operating system calls.

2 Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (`stdlib.h') 3

2 Standard Utility Functions (`stdlib.h')

This chapter groups utility functions useful in a variety of programs. The corresponding
declarations are in the header �le `stdlib.h'.

4 Red Hat newlib C Library, Full

2.1 _Exit|end program execution with no cleanup
processing

Synopsis

#include <stdlib.h>

void _Exit(int code);

Description

Use _Exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are de�ned in `stdlib.h' to indicate success or failure
in a portable fashion.

_Exit di�ers from exit in that it does not run any application-de�ned cleanup functions
registered with atexit and it does not clean up �les and streams. It is identical to _exit.

Returns

_Exit does not return to its caller.

Portability

_Exit is de�ned by the C99 standard.

Supporting OS subroutines required: _exit.

Chapter 2: Standard Utility Functions (`stdlib.h') 5

2.2 a64l, l64a|convert between radix-64 ASCII string and
long

Synopsis

#include <stdlib.h>

long a64l(const char *input);

char *l64a(long input);

Description

Conversion is performed between long and radix-64 characters. The l64a routine transforms
up to 32 bits of input value starting from least signi�cant bits to the most signi�cant bits.
The input value is split up into a maximum of 5 groups of 6 bits and possibly one group of
2 bits (bits 31 and 30).

Each group of 6 bits forms a value from 0{63 which is translated into a character as follows:

� 0 = '.'

� 1 = '/'

� 2{11 = '0' to '9'

� 12{37 = 'A' to 'Z'

� 38{63 = 'a' to 'z'

When the remaining bits are zero or all bits have been translated, a null terminator is
appended to the string. An input value of 0 results in the empty string.

The a64l function performs the reverse translation. Each character is used to generate a
6-bit value for up to 30 bits and then a 2-bit value to complete a 32-bit result. The null
terminator means that the remaining digits are 0. An empty input string or NULL string
results in 0L. An invalid string results in unde�ned behavior. If the size of a long is greater
than 32 bits, the result is sign-extended.

Returns

l64a returns a null-terminated string of 0 to 6 characters. a64l returns the 32-bit translated
value from the input character string.

Portability

l64a and a64l are non-ANSI and are de�ned by the Single Unix Speci�cation.

Supporting OS subroutines required: None.

6 Red Hat newlib C Library, Full

2.3 abort|abnormal termination of a program

Synopsis

#include <stdlib.h>

void abort(void);

Description

Use abort to signal that your program has detected a condition it cannot deal with. Nor-
mally, abort ends your program's execution.

Before terminating your program, abort raises the exception SIGABRT (using
`raise(SIGABRT)'). If you have used signal to register an exception handler for this
condition, that handler has the opportunity to retain control, thereby avoiding program
termination.

In this implementation, abort does not perform any stream- or �le-related cleanup (the
host environment may do so; if not, you can arrange for your program to do its own cleanup
with a SIGABRT exception handler).

Returns

abort does not return to its caller.

Portability

ANSI C requires abort.

Supporting OS subroutines required: _exit and optionally, write.

Chapter 2: Standard Utility Functions (`stdlib.h') 7

2.4 abs|integer absolute value (magnitude)

Synopsis

#include <stdlib.h>

int abs(int i);

Description

abs returns jxj, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function labs uses and returns long rather than int values.

Returns

The result is a nonnegative integer.

Portability

abs is ANSI.

No supporting OS subroutines are required.

8 Red Hat newlib C Library, Full

2.5 assert|macro for debugging diagnostics

Synopsis

#include <assert.h>

void assert(int expression);

Description

Use this macro to embed debuggging diagnostic statements in your programs. The argument
expression should be an expression which evaluates to true (nonzero) when your program
is working as you intended.

When expression evaluates to false (zero), assert calls abort, after �rst printing a message
showing what failed and where:

Assertion failed: expression, file filename, line lineno, function: func

If the name of the current function is not known (for example, when using a C89 compiler
that does not understand func), the function location is omitted.

The macro is de�ned to permit you to turn o� all uses of assert at compile time by de�ning
NDEBUG as a preprocessor variable. If you do this, the assert macro expands to

(void(0))

Returns

assert does not return a value.

Portability

The assert macro is required by ANSI, as is the behavior when NDEBUG is de�ned.

Supporting OS subroutines required (only if enabled): close, fstat, getpid, isatty, kill,
lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (`stdlib.h') 9

2.6 atexit|request execution of functions at program exit

Synopsis

#include <stdlib.h>

int atexit (void (*function)(void));

Description

You can use atexit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-de�ned function (which
must not require arguments and must not return a result).

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit will
be the �rst to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit will call malloc to get space for the
next part of the list. The initial list of 32 functions is statically allocated, so you can always
count on at least that many slots available.

Returns

atexit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability

atexit is required by the ANSI standard, which also speci�es that implementations must
support enrolling at least 32 functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

10 Red Hat newlib C Library, Full

2.7 atof, atoff|string to double or oat

Synopsis

#include <stdlib.h>

double atof(const char *s);

float atoff(const char *s);

Description

atof converts the initial portion of a string to a double. atoff converts the initial portion
of a string to a float.
The functions parse the character string s, locating a substring which can be converted to
a oating-point value. The substring must match the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring converted is the longest initial fragment of s that has the expected format,
beginning with the �rst non-whitespace character. The substring is empty if str is empty,
consists entirely of whitespace, or if the �rst non-whitespace character is something other
than +, -, ., or a digit.

atof(s) is implemented as strtod(s, NULL). atoff(s) is implemented as strtof(s,

NULL).

Returns

atof returns the converted substring value, if any, as a double; or 0.0, if no conversion
could be performed. If the correct value is out of the range of representable values, plus
or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would
cause underow, 0.0 is returned and ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

Portability

atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but are used
extensively in existing code. These functions are less reliable, but may be faster if the
argument is veri�ed to be in a valid range.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (`stdlib.h') 11

2.8 atoi, atol|string to integer

Synopsis

#include <stdlib.h>

int atoi(const char *s);

long atol(const char *s);

int _atoi_r(struct _reent *ptr, const char *s);

long _atol_r(struct _reent *ptr, const char *s);

Description

atoi converts the initial portion of a string to an int. atol converts the initial portion of
a string to a long.

atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is implemented as
strtol(s, NULL, 10).

_atoi_r and _atol_r are reentrant versions of atoi and atol respectively, passing the
reentrancy struct pointer.

Returns

The functions return the converted value, if any. If no conversion was made, 0 is returned.

Portability

atoi, atol are ANSI.

No supporting OS subroutines are required.

12 Red Hat newlib C Library, Full

2.9 atoll|convert a string to a long long integer

Synopsis

#include <stdlib.h>

long long atoll(const char *str);

long long _atoll_r(struct _reent *ptr, const char *str);

Description

The function atoll converts the initial portion of the string pointed to by *str to a type
long long. A call to atoll(str) in this implementation is equivalent to strtoll(str, (char
**)NULL, 10) including behavior on error.

The alternate function _atoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

The converted value.

Portability

atoll is ISO 9899 (C99) and POSIX 1003.1-2001 compatable.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 13

2.10 calloc|allocate space for arrays

Synopsis

#include <stdlib.h>

void *calloc(size_t n, size_t s);

void *calloc_r(void *reent, size_t <n>, <size_t> s);

Description

Use calloc to request a block of memory su�cient to hold an array of n elements, each of
which has size s.

The memory allocated by calloc comes out of the same memory pool used by malloc, but
the memory block is initialized to all zero bytes. (To avoid the overhead of initializing the
space, use malloc instead.)

The alternate function _calloc_r is reentrant. The extra argument reent is a pointer to a
reentrancy structure.

Returns

If successful, a pointer to the newly allocated space.

If unsuccessful, NULL.

Portability

calloc is ANSI.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

14 Red Hat newlib C Library, Full

2.11 div|divide two integers

Synopsis

#include <stdlib.h>

div_t div(int n, int d);

Description

Divide n=d, returning quotient and remainder as two integers in a structure div_t.

Returns

The result is represented with the structure
typedef struct
{
int quot;
int rem;
} div_t;

where the quot �eld represents the quotient, and rem the remainder. For nonzero d, if `r =

div(n,d);' then n equals `r.rem + d*r.quot'.

To divide long rather than int values, use the similar function ldiv.

Portability

div is ANSI.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 15

2.12 ecvt, ecvtf, fcvt, fcvtf|double or oat to string

Synopsis

#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);

char *ecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals,

int *decpt, int *sgn);

char *fcvtf(float val, int decimals,

int *decpt, int *sgn);

Description

ecvt and fcvt produce (null-terminated) strings of digits representating the double num-
ber val. ecvtf and fcvtf produce the corresponding character representations of float
numbers.

(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of ecvt and fcvt.)

The only di�erence between ecvt and fcvt is the interpretation of the second argument
(chars or decimals). For ecvt, the second argument chars speci�es the total number of
characters to write (which is also the number of signi�cant digits in the formatted string,
since these two functions write only digits). For fcvt, the second argument decimals speci-
�es the number of characters to write after the decimal point; all digits for the integer part
of val are always included.

Since ecvt and fcvt write only digits in the output string, they record the location of the
decimal point in *decpt , and the sign of the number in *sgn . After formatting a number,
*decpt contains the number of digits to the left of the decimal point. *sgn contains 0 if
the number is positive, and 1 if it is negative.

Returns

All four functions return a pointer to the new string containing a character representation
of val.

Portability

None of these functions are ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

16 Red Hat newlib C Library, Full

2.13 gvcvt, gcvtf|format double or oat as string

Synopsis

#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);

char *gcvtf(float val, int precision, char *buf);

Description

gcvt writes a fully formatted number as a null-terminated string in the bu�er *buf . gdvtf
produces corresponding character representations of float numbers.

gcvt uses the same rules as the printf format `%.precisiong'|only negative values are
signed (with `-'), and either exponential or ordinary decimal-fraction format is chosen de-
pending on the number of signi�cant digits (speci�ed by precision).

Returns

The result is a pointer to the formatted representation of val (the same as the argument
buf).

Portability

Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (`stdlib.h') 17

2.14 ecvtbuf, fcvtbuf|double or oat to string

Synopsis

#include <stdio.h>

char *ecvtbuf(double val, int chars, int *decpt,

int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,

int *sgn, char *buf);

Description

ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representating the double
number val.

The only di�erence between ecvtbuf and fcvtbuf is the interpretation of the second ar-
gument (chars or decimals). For ecvtbuf, the second argument chars speci�es the total
number of characters to write (which is also the number of signi�cant digits in the format-
ted string, since these two functions write only digits). For fcvtbuf, the second argument
decimals speci�es the number of characters to write after the decimal point; all digits for
the integer part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they record the location
of the decimal point in *decpt , and the sign of the number in *sgn . After formatting
a number, *decpt contains the number of digits to the left of the decimal point. *sgn

contains 0 if the number is positive, and 1 if it is negative. For both functions, you supply
a pointer buf to an area of memory to hold the converted string.

Returns

Both functions return a pointer to buf, the string containing a character representation of
val.

Portability

Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

18 Red Hat newlib C Library, Full

2.15 __env_lock, __env_unlock|lock environ variable

Synopsis

#include "envlock.h"

void __env_lock (struct _reent *reent);

void __env_unlock (struct _reent *reent);

Description

The setenv family of routines call these functions when they need to modify the environ
variable. The version of these routines supplied in the library use the lock API de�ned
in sys/lock.h. If multiple threads of execution can call setenv, or if setenv can be called
reentrantly, then you need to de�ne your own versions of these functions in order to safely
lock the memory pool during a call. If you do not, the memory pool may become corrupted.

A call to setenv may call __env_lock recursively; that is, the sequence of calls may go
__env_lock, __env_lock, __env_unlock, __env_unlock. Any implementation of these
routines must be careful to avoid causing a thread to wait for a lock that it already holds.

Chapter 2: Standard Utility Functions (`stdlib.h') 19

2.16 exit|end program execution

Synopsis

#include <stdlib.h>

void exit(int code);

Description

Use exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are de�ned in `stdlib.h' to indicate success or failure
in a portable fashion.

exit does two kinds of cleanup before ending execution of your program. First, it calls
all application-de�ned cleanup functions you have enrolled with atexit. Second, �les and
streams are cleaned up: any pending output is delivered to the host system, each open �le
or stream is closed, and �les created by tmpfile are deleted.

Returns

exit does not return to its caller.

Portability

ANSI C requires exit, and speci�es that EXIT_SUCCESS and EXIT_FAILUREmust be de�ned.

Supporting OS subroutines required: _exit.

20 Red Hat newlib C Library, Full

2.17 getenv|look up environment variable

Synopsis

#include <stdlib.h>

char *getenv(const char *name);

Description

getenv searches the list of environment variable names and values (using the global pointer
\char **environ") for a variable whose name matches the string at name. If a variable
name matches, getenv returns a pointer to the associated value.

Returns

A pointer to the (string) value of the environment variable, or NULL if there is no such
environment variable.

Portability

getenv is ANSI, but the rules for properly forming names of environment variables vary
from one system to another.

getenv requires a global pointer environ.

Chapter 2: Standard Utility Functions (`stdlib.h') 21

2.18 labs|long integer absolute value

Synopsis

#include <stdlib.h>

long labs(long i);

Description

labs returns jxj, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function abs uses and returns int rather than long values.

Returns

The result is a nonnegative long integer.

Portability

labs is ANSI.

No supporting OS subroutine calls are required.

22 Red Hat newlib C Library, Full

2.19 ldiv|divide two long integers

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long n, long d);

Description

Divide n=d, returning quotient and remainder as two long integers in a structure ldiv_t.

Returns

The result is represented with the structure
typedef struct
{
long quot;
long rem;
} ldiv_t;

where the quot �eld represents the quotient, and rem the remainder. For nonzero d, if `r =

ldiv(n,d);' then n equals `r.rem + d*r.quot'.

To divide int rather than long values, use the similar function div.

Portability

ldiv is ANSI.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 23

2.20 llabs|compute the absolute value of an long long
integer.

Synopsis

#include <stdlib.h>

long long llabs(long long j);

Description

The llabs function computes the absolute value of the long long integer argument j (also
called the magnitude of j).

The similar function labs uses and returns long rather than long long values.

Returns

A nonnegative long long integer.

Portability

llabs is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

24 Red Hat newlib C Library, Full

2.21 lldiv|divide two long long integers

Synopsis

#include <stdlib.h>

lldiv_t lldiv(long long n, long long d);

Description

Divide n=d, returning quotient and remainder as two long long integers in a structure
lldiv_t.

Returns

The result is represented with the structure
typedef struct
{
long long quot;
long long rem;
} lldiv_t;

where the quot �eld represents the quotient, and rem the remainder. For nonzero d, if `r =

ldiv(n,d);' then n equals `r.rem + d*r.quot'.

To divide long rather than long long values, use the similar function ldiv.

Portability

lldiv is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 25

2.22 malloc, realloc, free|manage memory

Synopsis

#include <stdlib.h>

void *malloc(size_t nbytes);

void *realloc(void *aptr, size_t nbytes);

void free(void *aptr);

void *memalign(size_t align, size_t nbytes);

size_t malloc_usable_size(void *aptr);

void *_malloc_r(void *reent, size_t nbytes);

void *_realloc_r(void *reent,

void *aptr, size_t nbytes);

void _free_r(void *reent, void *aptr);

void *_memalign_r(void *reent,

size_t align, size_t nbytes);

size_t _malloc_usable_size_r(void *reent, void *aptr);

Description

These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of storage available.
If the space is available, malloc returns a pointer to a newly allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer need all the
space allocated to it, you can make it smaller by calling realloc with both the object
pointer and the new desired size as arguments. realloc guarantees that the contents of
the smaller object match the beginning of the original object.

Similarly, if you need more space for an object, use realloc to request the larger size; again,
realloc guarantees that the beginning of the new, larger object matches the contents of
the original object.

When you no longer need an object originally allocated by malloc or realloc (or the
related function calloc), return it to the memory storage pool by calling free with the
address of the object as the argument. You can also use realloc for this purpose by calling
it with 0 as the nbytes argument.

The memalign function returns a block of size nbytes aligned to a align boundary. The
align argument must be a power of two.

The malloc_usable_size function takes a pointer to a block allocated by malloc. It
returns the amount of space that is available in the block. This may or may not be more
than the size requested from malloc, due to alignment or minimum size constraints.

The alternate functions _malloc_r, _realloc_r, _free_r, _memalign_r, and _malloc_

usable_size_r are reentrant versions. The extra argument reent is a pointer to a reen-
trancy structure.

26 Red Hat newlib C Library, Full

If you have multiple threads of execution which may call any of these routines, or if any
of these routines may be called reentrantly, then you must provide implementations of the
__malloc_lock and __malloc_unlock functions for your system. See the documentation
for those functions.

These functions operate by calling the function _sbrk_r or sbrk, which allocates space.
You may need to provide one of these functions for your system. _sbrk_r is called with
a positive value to allocate more space, and with a negative value to release previously
allocated space if it is no longer required. See Section 12.1 [Stubs], page 265.

Returns

malloc returns a pointer to the newly allocated space, if successful; otherwise it returns
NULL. If your application needs to generate empty objects, you may use malloc(0) for this
purpose.

realloc returns a pointer to the new block of memory, or NULL if a new block could not
be allocated. NULL is also the result when you use `realloc(aptr,0)' (which has the
same e�ect as `free(aptr)'). You should always check the result of realloc; successful
reallocation is not guaranteed even when you request a smaller object.

free does not return a result.

memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

Portability

malloc, realloc, and free are speci�ed by the ANSI C standard, but other conforming
implementations of malloc may behave di�erently when nbytes is zero.

memalign is part of SVR4.

malloc_usable_size is not portable.

Supporting OS subroutines required: sbrk.

Chapter 2: Standard Utility Functions (`stdlib.h') 27

2.23 mallinfo, malloc_stats, mallopt|malloc support

Synopsis

#include <malloc.h>

struct mallinfo mallinfo(void);

void malloc_stats(void);

int mallopt(int parameter, value);

struct mallinfo _mallinfo_r(void *reent);

void _malloc_stats_r(void *reent);

int _mallopt_r(void *reent, int parameter, value);

Description

mallinfo returns a structure describing the current state of memory allocation. The struc-
ture is de�ned in malloc.h. The following �elds are de�ned: arena is the total amount of
space in the heap; ordblks is the number of chunks which are not in use; uordblks is the
total amount of space allocated by malloc; fordblks is the total amount of space not in
use; keepcost is the size of the top most memory block.

malloc_stats print some statistics about memory allocation on standard error.

mallopt takes a parameter and a value. The parameters are de�ned in malloc.h, and may
be one of the following: M_TRIM_THRESHOLD sets the maximum amount of unused space in
the top most block before releasing it back to the system in free (the space is released by
calling _sbrk_r with a negative argument); M_TOP_PAD is the amount of padding to allocate
whenever _sbrk_r is called to allocate more space.

The alternate functions _mallinfo_r, _malloc_stats_r, and _mallopt_r are reentrant
versions. The extra argument reent is a pointer to a reentrancy structure.

Returns

mallinfo returns a mallinfo structure. The structure is de�ned in malloc.h.

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could be set.

Portability

mallinfo and mallopt are provided by SVR4, but mallopt takes di�erent parameters on
di�erent systems. malloc_stats is not portable.

28 Red Hat newlib C Library, Full

2.24 __malloc_lock, __malloc_unlock|lock malloc pool

Synopsis

#include <malloc.h>

void __malloc_lock (struct _reent *reent);

void __malloc_unlock (struct _reent *reent);

Description

The malloc family of routines call these functions when they need to lock the memory pool.
The version of these routines supplied in the library use the lock API de�ned in sys/lock.h.
If multiple threads of execution can call malloc, or if malloc can be called reentrantly, then
you need to de�ne your own versions of these functions in order to safely lock the memory
pool during a call. If you do not, the memory pool may become corrupted.

A call to mallocmay call __malloc_lock recursively; that is, the sequence of calls may go __
malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock. Any implementation
of these routines must be careful to avoid causing a thread to wait for a lock that it already
holds.

Chapter 2: Standard Utility Functions (`stdlib.h') 29

2.25 mblen|minimal multibyte length function

Synopsis

#include <stdlib.h>

int mblen(const char *s, size_t n);

Description

When MB CAPABLE is not de�ned, this is a minimal ANSI-conforming implementation
of mblen. In this case, the only \multi-byte character sequences" recognized are single
bytes, and thus 1 is returned unless s is the null pointer or has a length of 0 or is the empty
string.

When MB CAPABLE is de�ned, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a de�ned set of locales.

Returns

This implementation of mblen returns 0 if s is NULL or the empty string; it returns 1 if not
MB CAPABLE or the character is a single-byte character; it returns -1 if the multi-byte
character is invalid; otherwise it returns the number of bytes in the multibyte character.

Portability

mblen is required in the ANSI C standard. However, the precise e�ects vary with the locale.

mblen requires no supporting OS subroutines.

30 Red Hat newlib C Library, Full

2.26 mbstowcs|minimal multibyte string to wide char
converter

Synopsis

#include <stdlib.h>

int mbstowcs(wchar_t *pwc, const char *s, size_t n);

Description

When MB CAPABLE is not de�ned, this is a minimal ANSI-conforming implementation
of mbstowcs. In this case, the only \multi-byte character sequences" recognized are single
bytes, and they are \converted" to wide-char versions simply by byte extension.

When MB CAPABLE is de�ned, this routine calls _mbstowcs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a de�ned set of locales.

Returns

This implementation of mbstowcs returns 0 if s is NULL or is the empty string; it returns -1 if
MB CAPABLE and one of the multi-byte characters is invalid or incomplete; otherwise it
returns the minimum of: n or the number of multi-byte characters in s plus 1 (to compensate
for the nul character). If the return value is -1, the state of the pwc string is indeterminate.
If the input has a length of 0, the output string will be modi�ed to contain a wchar t nul
terminator.

Portability

mbstowcs is required in the ANSI C standard. However, the precise e�ects vary with the
locale.

mbstowcs requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (`stdlib.h') 31

2.27 mbtowc|minimal multibyte to wide char converter

Synopsis

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description

When MB CAPABLE is not de�ned, this is a minimal ANSI-conforming implementation
of mbtowc. In this case, only \multi-byte character sequences" recognized are single bytes,
and they are \converted" to themselves. Each call to mbtowc copies one character from *s

to *pwc , unless s is a null pointer. The argument n is ignored.

When MB CAPABLE is de�ned, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a de�ned set of locales.

Returns

This implementation of mbtowc returns 0 if s is NULL or is the empty string; it returns 1 if
not MB CAPABLE or the character is a single-byte character; it returns -1 if n is 0 or the
multi-byte character is invalid; otherwise it returns the number of bytes in the multibyte
character. If the return value is -1, no changes are made to the pwc output string. If the
input is the empty string, a wchar t nul is placed in the output string and 0 is returned. If
the input has a length of 0, no changes are made to the pwc output string.

Portability

mbtowc is required in the ANSI C standard. However, the precise e�ects vary with the
locale.

mbtowc requires no supporting OS subroutines.

32 Red Hat newlib C Library, Full

2.28 on_exit|request execution of function with argument
at program exit

Synopsis

#include <stdlib.h>

int on_exit (void (*function)(int, void *), void *arg);

Description

You can use on_exit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-de�ned function which
takes two arguments. The �rst is the status code passed to exit and the second argument is
of type pointer to void. The function must not return a result. The value of arg is registered
and passed as the argument to function.

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit or
on_exit will be the �rst to execute when your program exits. You can intermix functions
using atexit and on_exit.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit/on_exit will call malloc to get space
for the next part of the list. The initial list of 32 functions is statically allocated, so you
can always count on at least that many slots available.

Returns

on_exit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability

on_exit is a non-standard glibc extension

Supporting OS subroutines required: None

Chapter 2: Standard Utility Functions (`stdlib.h') 33

2.29 rand, srand|pseudo-random numbers

Synopsis

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

int rand_r(unsigned int *seed);

Description

rand returns a di�erent integer each time it is called; each integer is chosen by an algorithm
designed to be unpredictable, so that you can use rand when you require a random number.
The algorithm depends on a static variable called the \random seed"; starting with a given
value of the random seed always produces the same sequence of numbers in successive calls
to rand.

You can set the random seed using srand; it does nothing beyond storing its argument in the
static variable used by rand. You can exploit this to make the pseudo-random sequence less
predictable, if you wish, by using some other unpredictable value (often the least signi�cant
parts of a time-varying value) as the random seed before beginning a sequence of calls to
rand; or, if you wish to ensure (for example, while debugging) that successive runs of your
program use the same \random" numbers, you can use srand to set the same random seed
at the outset.

Returns

rand returns the next pseudo-random integer in sequence; it is a number between 0 and
RAND_MAX (inclusive).

srand does not return a result.

Portability

rand is required by ANSI, but the algorithm for pseudo-random number generation is not
speci�ed; therefore, even if you use the same random seed, you cannot expect the same
sequence of results on two di�erent systems.

rand requires no supporting OS subroutines.

34 Red Hat newlib C Library, Full

2.30 rand48, drand48, erand48, lrand48, nrand48, mrand48,
jrand48, srand48, seed48, lcong48|pseudo-random
number generators and initialization routines

Synopsis

#include <stdlib.h>

double drand48(void);

double erand48(unsigned short xseed[3]);

long lrand48(void);

long nrand48(unsigned short xseed[3]);

long mrand48(void);

long jrand48(unsigned short xseed[3]);

void srand48(long seed);

unsigned short *seed48(unsigned short xseed[3]);

void lcong48(unsigned short p[7]);

Description

The rand48 family of functions generates pseudo-random numbers using a linear congruen-
tial algorithm working on integers 48 bits in size. The particular formula employed is r(n+1)
= (a * r(n) + c) mod m where the default values are for the multiplicand a = 0xfdeece66d
= 25214903917 and the addend c = 0xb = 11. The modulo is always �xed at m = 2 ** 48.
r(n) is called the seed of the random number generator.

For all the six generator routines described next, the �rst computational step is to perform
a single iteration of the algorithm.

drand48 and erand48 return values of type double. The full 48 bits of r(n+1) are loaded
into the mantissa of the returned value, with the exponent set such that the values produced
lie in the interval [0.0, 1.0].

lrand48 and nrand48 return values of type long in the range [0, 2**31-1]. The high-order
(31) bits of r(n+1) are loaded into the lower bits of the returned value, with the topmost
(sign) bit set to zero.

mrand48 and jrand48 return values of type long in the range [-2**31, 2**31-1]. The high-
order (32) bits of r(n+1) are loaded into the returned value.

drand48, lrand48, and mrand48 use an internal bu�er to store r(n). For these functions
the initial value of r(0) = 0x1234abcd330e = 20017429951246.

On the other hand, erand48, nrand48, and jrand48 use a user-supplied bu�er to store the
seed r(n), which consists of an array of 3 shorts, where the zeroth member holds the least
signi�cant bits.

All functions share the same multiplicand and addend.

srand48 is used to initialize the internal bu�er r(n) of drand48, lrand48, and mrand48 such
that the 32 bits of the seed value are copied into the upper 32 bits of r(n), with the lower
16 bits of r(n) arbitrarily being set to 0x330e. Additionally, the constant multiplicand and
addend of the algorithm are reset to the default values given above.

seed48 also initializes the internal bu�er r(n) of drand48, lrand48, and mrand48, but here
all 48 bits of the seed can be speci�ed in an array of 3 shorts, where the zeroth member
speci�es the lowest bits. Again, the constant multiplicand and addend of the algorithm are
reset to the default values given above. seed48 returns a pointer to an array of 3 shorts

Chapter 2: Standard Utility Functions (`stdlib.h') 35

which contains the old seed. This array is statically allocated, thus its contents are lost
after each new call to seed48.

Finally, lcong48 allows full control over the multiplicand and addend used in drand48,
erand48, lrand48, nrand48, mrand48, and jrand48, and the seed used in drand48,
lrand48, and mrand48. An array of 7 shorts is passed as parameter; the �rst three shorts
are used to initialize the seed; the second three are used to initialize the multiplicand; and
the last short is used to initialize the addend. It is thus not possible to use values greater
than 0x�� as the addend.

Note that all three methods of seeding the random number generator always also set the
multiplicand and addend for any of the six generator calls.

For a more powerful random number generator, see random.

Portability

SUS requires these functions.

No supporting OS subroutines are required.

36 Red Hat newlib C Library, Full

2.31 strtod, strtof|string to double or oat

Synopsis

#include <stdlib.h>

double strtod(const char *str, char **tail);

float strtof(const char *str, char **tail);

double _strtod_r(void *reent,

const char *str, char **tail);

Description
The function strtod parses the character string str, producing a substring which can be
converted to a double value. The substring converted is the longest initial subsequence of
str, beginning with the �rst non-whitespace character, that has the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring contains no characters if str is empty, consists entirely of whitespace, or if the
�rst non-whitespace character is something other than +, -, ., or a digit. If the substring
is empty, no conversion is done, and the value of str is stored in *tail . Otherwise, the
substring is converted, and a pointer to the �nal string (which will contain at least the
terminating null character of str) is stored in *tail . If you want no assignment to *tail ,
pass a null pointer as tail. strtof is identical to strtod except for its return type.

This implementation returns the nearest machine number to the input decimal string. Ties
are broken by using the IEEE round-even rule.

The alternate function _strtod_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtod returns the converted substring value, if any. If no conversion could be performed,
0 is returned. If the correct value is out of the range of representable values, plus or minus
HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would cause
underow, 0 is returned and ERANGE is stored in errno.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (`stdlib.h') 37

2.32 strtol|string to long

Synopsis

#include <stdlib.h>

long strtol(const char *s, char **ptr,int base);

long _strtol_r(void *reent,

const char *s, char **ptr,int base);

Description

The function strtol converts the string *s to a long. First, it breaks down the string into
three parts: leading whitespace, which is ignored; a subject string consisting of characters
resembling an integer in the radix speci�ed by base; and a trailing portion consisting of
zero or more unparseable characters, and always including the terminating null character.
Then, it attempts to convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible `0x' indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix speci�ed by base, with an optional plus or minus
sign. The letters a{z (or, equivalently, A{Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the �rst character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtol returns the converted value, if any. If no conversion was made, 0 is returned.

strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability

strtol is ANSI.

No supporting OS subroutines are required.

38 Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (`stdlib.h') 39

2.33 strtoll|string to long long

Synopsis

#include <stdlib.h>

long long strtoll(const char *s, char **ptr,int base);

long long _strtoll_r(void *reent,

const char *s, char **ptr,int base);

Description

The function strtoll converts the string *s to a long long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix speci�ed by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating null
character. Then, it attempts to convert the subject string into a long long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible `0x' indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix speci�ed by base, with an optional plus or minus
sign. The letters a{z (or, equivalently, A{Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoll attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix,
as described above. If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the �rst character past the converted subject string is stored in ptr, if
ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtoll returns the converted value, if any. If no conversion was made, 0 is returned.

strtoll returns LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the converted value
is too large, and sets errno to ERANGE.

Portability

strtoll is ANSI.

40 Red Hat newlib C Library, Full

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 41

2.34 strtoul|string to unsigned long

Synopsis

#include <stdlib.h>

unsigned long strtoul(const char *s, char **ptr,

int base);

unsigned long _strtoul_r(void *reent, const char *s,

char **ptr, int base);

Description

The function strtoul converts the string *s to an unsigned long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of the digits meaningful in the radix speci�ed by base (for example, 0 through 7 if the value
of base is 8); and a trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert the subject
string into an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix speci�ed by base. The letters a{z (or A{Z) are used as digits valued
from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the �rst character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtoul returns the converted value, if any. If no conversion was made, 0 is returned.

strtoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets
errno to ERANGE.

Portability

strtoul is ANSI.

42 Red Hat newlib C Library, Full

strtoul requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (`stdlib.h') 43

2.35 strtoull|string to unsigned long long

Synopsis

#include <stdlib.h>

unsigned long long strtoull(const char *s, char **ptr,

int base);

unsigned long long _strtoull_r(void *reent, const char *s,

char **ptr, int base);

Description

The function strtoull converts the string *s to an unsigned long long. First, it breaks
down the string into three parts: leading whitespace, which is ignored; a subject string
consisting of the digits meaningful in the radix speci�ed by base (for example, 0 through
7 if the value of base is 8); and a trailing portion consisting of one or more unparseable
characters, which always includes the terminating null character. Then, it attempts to
convert the subject string into an unsigned long long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix speci�ed by base. The letters a{z (or A{Z) are used as digits valued
from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoull attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the �rst character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoull_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtoull returns the converted value, if any. If no conversion was made, 0 is returned.

strtoull returns ULONG_LONG_MAX if the magnitude of the converted value is too large, and
sets errno to ERANGE.

Portability

strtoull is ANSI.

44 Red Hat newlib C Library, Full

strtoull requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (`stdlib.h') 45

2.36 wcstol|wide string to long

Synopsis

#include <wchar.h>

long wcstol(const wchar_t *s, wchar_t **ptr,int base);

long _wcstol_r(void *reent,

const wchar_t *s, wchar_t **ptr,int base);

Description

The function wcstol converts the wide string *s to a long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix speci�ed by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating
null character. Then, it attempts to convert the subject string into a long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible `0x' indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix speci�ed by base, with an optional plus or minus
sign. The letters a{z (or, equivalently, A{Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the �rst character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

wcstol returns the converted value, if any. If no conversion was made, 0 is returned.

wcstol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability

wcstol is ANSI.

46 Red Hat newlib C Library, Full

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 47

2.37 wcstoll|wide string to long long

Synopsis

#include <wchar.h>

long long wcstoll(const wchar_t *s, wchar_t **ptr,int base);

long long _wcstoll_r(void *reent,

const wchar_t *s, wchar_t **ptr,int base);

Description

The function wcstoll converts the wide string *s to a long long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix speci�ed by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating null
character. Then, it attempts to convert the subject string into a long long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible `0x' indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix speci�ed by base, with an optional plus or minus
sign. The letters a{z (or, equivalently, A{Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoll attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix,
as described above. If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the �rst character past the converted subject string is stored in ptr, if
ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

wcstoll returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoll returns LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the converted value
is too large, and sets errno to ERANGE.

Portability

wcstoll is ANSI.

48 Red Hat newlib C Library, Full

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (`stdlib.h') 49

2.38 wcstoul|wide string to unsigned long

Synopsis

#include <wchar.h>

unsigned long wcstoul(const wchar_t *s, wchar_t **ptr,

int base);

unsigned long _wcstoul_r(void *reent, const wchar_t *s,

wchar_t **ptr, int base);

Description

The function wcstoul converts the wide string *s to an unsigned long. First, it breaks
down the string into three parts: leading whitespace, which is ignored; a subject string
consisting of the digits meaningful in the radix speci�ed by base (for example, 0 through
7 if the value of base is 8); and a trailing portion consisting of one or more unparseable
characters, which always includes the terminating null character. Then, it attempts to
convert the subject string into an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix speci�ed by base. The letters a{z (or A{Z) are used as digits valued
from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the �rst character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

wcstoul returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets
errno to ERANGE.

Portability

wcstoul is ANSI.

50 Red Hat newlib C Library, Full

wcstoul requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (`stdlib.h') 51

2.39 wcstoull|wide string to unsigned long long

Synopsis

#include <wchar.h>

unsigned long long wcstoull(const wchar_t *s, wchar_t **ptr,

int base);

unsigned long long _wcstoull_r(void *reent, const wchar_t *s,

wchar_t **ptr, int base);

Description

The function wcstoull converts the wide string *s to an unsigned long long. First,
it breaks down the string into three parts: leading whitespace, which is ignored; a sub-
ject string consisting of the digits meaningful in the radix speci�ed by base (for example,
0 through 7 if the value of base is 8); and a trailing portion consisting of one or more
unparseable characters, which always includes the terminating null character. Then, it at-
tempts to convert the subject string into an unsigned long long integer, and returns the
result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix speci�ed by base. The letters a{z (or A{Z) are used as digits valued
from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the �rst non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the �rst non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoull attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the �rst character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoull_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

wcstoull returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoull returns ULONG_LONG_MAX if the magnitude of the converted value is too large, and
sets errno to ERANGE.

Portability

wcstoull is ANSI.

52 Red Hat newlib C Library, Full

wcstoull requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (`stdlib.h') 53

2.40 system|execute command string

Synopsis

#include <stdlib.h>

int system(char *s);

int _system_r(void *reent, char *s);

Description

Use system to pass a command string *s to /bin/sh on your system, and wait for it to
�nish executing.

Use \system(NULL)" to test whether your system has /bin/sh available.

The alternate function _system_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

system(NULL) returns a non-zero value if /bin/sh is available, and 0 if it is not.

With a command argument, the result of system is the exit status returned by /bin/sh.

Portability

ANSI C requires system, but leaves the nature and e�ects of a command processor unde-
�ned. ANSI C does, however, specify that system(NULL) return zero or nonzero to report
on the existence of a command processor.

POSIX.2 requires system, and requires that it invoke a sh. Where sh is found is left
unspeci�ed.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.

54 Red Hat newlib C Library, Full

2.41 wcstombs|minimal wide char string to multibyte string
converter

Synopsis

#include <stdlib.h>

int wcstombs(const char *s, wchar_t *pwc, size_t n);

Description

When MB CAPABLE is not de�ned, this is a minimal ANSI-conforming implementation
of wcstombs. In this case, all wide-characters are expected to represent single bytes and so
are converted simply by casting to char.

When MB CAPABLE is de�ned, this routine calls _wcstombs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a de�ned set of locales.

Returns

This implementation of wcstombs returns 0 if s is NULL or is the empty string; it returns
-1 if MB CAPABLE and one of the wide-char characters does not represent a valid multi-
byte character; otherwise it returns the minimum of: n or the number of bytes that are
transferred to s, not including the nul terminator.

If the return value is -1, the state of the pwc string is indeterminate. If the input has a
length of 0, the output string will be modi�ed to contain a wchar t nul terminator if n > 0.

Portability

wcstombs is required in the ANSI C standard. However, the precise e�ects vary with the
locale.

wcstombs requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (`stdlib.h') 55

2.42 wctomb|minimal wide char to multibyte converter

Synopsis

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

Description

When MB CAPABLE is not de�ned, this is a minimal ANSI-conforming implementation
of wctomb. The only \wide characters" recognized are single bytes, and they are \converted"
to themselves.

When MB CAPABLE is de�ned, this routine calls _wctomb_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a de�ned set of locales.

Each call to wctomb modi�es *s unless s is a null pointer or MB CAPABLE is de�ned and
wchar is invalid.

Returns

This implementation of wctomb returns 0 if s is NULL; it returns -1 if MB CAPABLE is
enabled and the wchar is not a valid multi-byte character, it returns 1 if MB CAPABLE
is not de�ned or the wchar is in reality a single byte character, otherwise it returns the
number of bytes in the multi-byte character.

Portability

wctomb is required in the ANSI C standard. However, the precise e�ects vary with the
locale.

wctomb requires no supporting OS subroutines.

56 Red Hat newlib C Library, Full

Chapter 3: Character Type Macros and Functions (`ctype.h') 57

3 Character Type Macros and Functions
(`ctype.h')

This chapter groups macros (which are also available as subroutines) to classify characters
into several categories (alphabetic, numeric, control characters, whitespace, and so on), or
to perform simple character mappings.

The header �le `ctype.h' de�nes the macros.

58 Red Hat newlib C Library, Full

3.1 isalnum|alphanumeric character predicate

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

isalnum is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for alphabetic or numeric ASCII characters, and 0 for other arguments.
It is de�ned for all integer values.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isalnum'.

Returns

isalnum returns non-zero if c is a letter (a{z or A{Z) or a digit (0{9).

Portability

isalnum is ANSI C.

No OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 59

3.2 isalpha|alphabetic character predicate

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

isalpha is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero when c represents an alphabetic ASCII character, and 0 otherwise. It is
de�ned only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isalpha'.

Returns

isalpha returns non-zero if c is a letter (A{Z or a{z).

Portability

isalpha is ANSI C.

No supporting OS subroutines are required.

60 Red Hat newlib C Library, Full

3.3 isascii|ASCII character predicate

Synopsis

#include <ctype.h>

int isascii(int c);

Description

isascii is a macro which returns non-zero when c is an ASCII character, and 0 otherwise.
It is de�ned for all integer values.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isascii'.

Returns

isascii returns non-zero if the low order byte of c is in the range 0 to 127 (0x00{0x7F).

Portability

isascii is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 61

3.4 iscntrl|control character predicate

Synopsis

#include <ctype.h>

int iscntrl(int c);

Description

iscntrl is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for control characters, and 0 for other characters. It is de�ned only when
isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef iscntrl'.

Returns

iscntrl returns non-zero if c is a delete character or ordinary control character (0x7F or
0x00{0x1F).

Portability

iscntrl is ANSI C.

No supporting OS subroutines are required.

62 Red Hat newlib C Library, Full

3.5 isdigit|decimal digit predicate

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

isdigit is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for decimal digits, and 0 for other characters. It is de�ned only when
isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isdigit'.

Returns

isdigit returns non-zero if c is a decimal digit (0{9).

Portability

isdigit is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 63

3.6 islower|lowercase character predicate

Synopsis

#include <ctype.h>

int islower(int c);

Description

islower is a macro which classi�es ASCII integer values by table lookup. It is a predi-
cate returning non-zero for minuscules (lowercase alphabetic characters), and 0 for other
characters. It is de�ned only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef islower'.

Returns

islower returns non-zero if c is a lowercase letter (a{z).

Portability

islower is ANSI C.

No supporting OS subroutines are required.

64 Red Hat newlib C Library, Full

3.7 isprint, isgraph|printable character predicates

Synopsis

#include <ctype.h>

int isprint(int c);

int isgraph(int c);

Description

isprint is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for printable characters, and 0 for other character arguments. It is
de�ned only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning either
macro using `#undef isprint' or `#undef isgraph'.

Returns

isprint returns non-zero if c is a printing character, (0x20{0x7E). isgraph behaves iden-
tically to isprint, except that the space character (0x20) is excluded.

Portability

isprint and isgraph are ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 65

3.8 ispunct|punctuation character predicate

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

ispunct is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for printable punctuation characters, and 0 for other characters. It is
de�ned only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef ispunct'.

Returns

ispunct returns non-zero if c is a printable punctuation character (isgraph(c) &&

!isalnum(c)).

Portability

ispunct is ANSI C.

No supporting OS subroutines are required.

66 Red Hat newlib C Library, Full

3.9 isspace|whitespace character predicate

Synopsis

#include <ctype.h>

int isspace(int c);

Description

isspace is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for whitespace characters, and 0 for other characters. It is de�ned only
when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isspace'.

Returns

isspace returns non-zero if c is a space, tab, carriage return, new line, vertical tab, or
formfeed (0x09{0x0D, 0x20).

Portability

isspace is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 67

3.10 isupper|uppercase character predicate

Synopsis

#include <ctype.h>

int isupper(int c);

Description

isupper is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for uppercase letters (A{Z), and 0 for other characters. It is de�ned only
when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isupper'.

Returns

isupper returns non-zero if c is a uppercase letter (A-Z).

Portability

isupper is ANSI C.

No supporting OS subroutines are required.

68 Red Hat newlib C Library, Full

3.11 isxdigit|hexadecimal digit predicate

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

isxdigit is a macro which classi�es ASCII integer values by table lookup. It is a predicate
returning non-zero for hexadecimal digits, and 0 for other characters. It is de�ned only
when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro de�nition by unde�ning the macro
using `#undef isxdigit'.

Returns

isxdigit returns non-zero if c is a hexadecimal digit (0{9, a{f, or A{F).

Portability

isxdigit is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 69

3.12 toascii|force integers to ASCII range

Synopsis

#include <ctype.h>

int toascii(int c);

Description

toascii is a macro which coerces integers to the ASCII range (0{127) by zeroing any
higher-order bits.

You can use a compiled subroutine instead of the macro de�nition by unde�ning this macro
using `#undef toascii'.

Returns

toascii returns integers between 0 and 127.

Portability

toascii is not ANSI C.

No supporting OS subroutines are required.

70 Red Hat newlib C Library, Full

3.13 tolower|translate characters to lowercase

Synopsis

#include <ctype.h>

int tolower(int c);

int _tolower(int c);

Description

tolower is a macro which converts uppercase characters to lowercase, leaving all other
characters unchanged. It is only de�ned when c is an integer in the range EOF to 255.

You can use a compiled subroutine instead of the macro de�nition by unde�ning this macro
using `#undef tolower'.

_tolower performs the same conversion as tolower, but should only be used when c is
known to be an uppercase character (A{Z).

Returns

tolower returns the lowercase equivalent of c when it is a character between A and Z, and
c otherwise.

_tolower returns the lowercase equivalent of c when it is a character between A and Z. If
c is not one of these characters, the behaviour of _tolower is unde�ned.

Portability

tolower is ANSI C. _tolower is not recommended for portable programs.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 71

3.14 toupper|translate characters to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);

int _toupper(int c);

Description

toupper is a macro which converts lowercase characters to uppercase, leaving all other
characters unchanged. It is only de�ned when c is an integer in the range EOF to 255.

You can use a compiled subroutine instead of the macro de�nition by unde�ning this macro
using `#undef toupper'.

_toupper performs the same conversion as toupper, but should only be used when c is
known to be a lowercase character (a{z).

Returns

toupper returns the uppercase equivalent of c when it is a character between a and z, and
c otherwise.

_toupper returns the uppercase equivalent of c when it is a character between a and z. If
c is not one of these characters, the behaviour of _toupper is unde�ned.

Portability

toupper is ANSI C. _toupper is not recommended for portable programs.

No supporting OS subroutines are required.

72 Red Hat newlib C Library, Full

3.15 iswalnum|alphanumeric wide character test

Synopsis

#include <wctype.h>

int iswalnum(wint_t c);

Description

iswalnum is a function which classi�es wide-character values that are alphanumeric.

Returns

iswalnum returns non-zero if c is a alphanumeric wide character.

Portability

iswalnum is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 73

3.16 iswalpha|alphabetic wide character test

Synopsis

#include <wctype.h>

int iswalpha(wint_t c);

Description

iswalpha is a function which classi�es wide-character values that are alphabetic.

Returns

iswalpha returns non-zero if c is an alphabetic wide character.

Portability

iswalpha is C99.

No supporting OS subroutines are required.

74 Red Hat newlib C Library, Full

3.17 iswcntrl|control wide character test

Synopsis

#include <wctype.h>

int iswcntrl(wint_t c);

Description

iswcntrl is a function which classi�es wide-character values that are categorized as control
characters.

Returns

iswcntrl returns non-zero if c is a control wide character.

Portability

iswcntrl is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 75

3.18 iswblank|blank wide character test

Synopsis

#include <wctype.h>

int iswblank(wint_t c);

Description

iswblank is a function which classi�es wide-character values that are categorized as blank.

Returns

iswblank returns non-zero if c is a blank wide character.

Portability

iswblank is C99.

No supporting OS subroutines are required.

76 Red Hat newlib C Library, Full

3.19 iswdigit|decimal digit wide character test

Synopsis

#include <wctype.h>

int iswdigit(wint_t c);

Description

iswdigit is a function which classi�es wide-character values that are decimal digits.

Returns

iswdigit returns non-zero if c is a decimal digit wide character.

Portability

iswdigit is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 77

3.20 iswgraph|graphic wide character test

Synopsis

#include <wctype.h>

int iswgraph(wint_t c);

Description

iswgraph is a function which classi�es wide-character values that are graphic.

Returns

iswgraph returns non-zero if c is a graphic wide character.

Portability

iswgraph is C99.

No supporting OS subroutines are required.

78 Red Hat newlib C Library, Full

3.21 iswlower|lowercase wide character test

Synopsis

#include <wctype.h>

int iswlower(wint_t c);

Description

iswlower is a function which classi�es wide-character values that have uppercase transla-
tions.

Returns

iswlower returns non-zero if c is a lowercase wide character.

Portability

iswlower is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 79

3.22 iswprint|printable wide character test

Synopsis

#include <wctype.h>

int iswprint(wint_t c);

Description

iswprint is a function which classi�es wide-character values that are printable.

Returns

iswprint returns non-zero if c is a printable wide character.

Portability

iswprint is C99.

No supporting OS subroutines are required.

80 Red Hat newlib C Library, Full

3.23 iswpunct|punctuation wide character test

Synopsis

#include <wctype.h>

int iswpunct(wint_t c);

Description

iswpunct is a function which classi�es wide-character values that are punctuation.

Returns

iswpunct returns non-zero if c is a punctuation wide character.

Portability

iswpunct is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 81

3.24 iswspace|whitespace wide character test

Synopsis

#include <wctype.h>

int iswspace(wint_t c);

Description

iswspace is a function which classi�es wide-character values that are categorized as white-
space.

Returns

iswspace returns non-zero if c is a whitespace wide character.

Portability

iswspace is C99.

No supporting OS subroutines are required.

82 Red Hat newlib C Library, Full

3.25 iswupper|uppercase wide character test

Synopsis

#include <wctype.h>

int iswupper(wint_t c);

Description

iswupper is a function which classi�es wide-character values that have uppercase transla-
tions.

Returns

iswupper returns non-zero if c is a uppercase wide character.

Portability

iswupper is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 83

3.26 iswxdigit|hexadecimal digit wide character test

Synopsis

#include <wctype.h>

int iswxdigit(wint_t c);

Description

iswxdigit is a function which classi�es wide character values that are hexadecimal digits.

Returns

iswxdigit returns non-zero if c is a hexadecimal digit wide character.

Portability

iswxdigit is C99.

No supporting OS subroutines are required.

84 Red Hat newlib C Library, Full

3.27 iswctype|extensible wide-character test

Synopsis

#include <wctype.h>

int iswctype(wint_t c, wctype_t desc);

Description

iswctype is a function which classi�es wide-character values using the wide-character test
speci�ed by desc.

Returns

iswctype returns non-zero if and only if c matches the test speci�ed by desc. If desc is
unknown, zero is returned.

Portability

iswctype is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 85

3.28 wctype|get wide-character classi�cation type

Synopsis

#include <wctype.h>

wctype_t wctype(const char *c);

Description

wctype is a function which takes a string c and gives back the appropriate wctype t type
value associated with the string, if one exists. The following values are guaranteed to
be recognized: "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print",
"punct", "space", "upper", and "xdigit".

Returns

wctype returns 0 and sets errno to EINVAL if the given name is invalid. Otherwise, it
returns a valid non-zero wctype t value.

Portability

wctype is C99.

No supporting OS subroutines are required.

86 Red Hat newlib C Library, Full

3.29 towlower|translate wide characters to lowercase

Synopsis

#include <wctype.h>

wint_t towlower(wint_t c);

Description

towlower is a function which converts uppercase wide characters to lowercase, leaving all
other characters unchanged.

Returns

towlower returns the lowercase equivalent of c when it is a uppercase wide character;
otherwise, it returns the input character.

Portability

towlower is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 87

3.30 towupper|translate wide characters to uppercase

Synopsis

#include <wctype.h>

wint_t towupper(wint_t c);

Description

towupper is a function which converts lowercase wide characters to uppercase, leaving all
other characters unchanged.

Returns

towupper returns the uppercase equivalent of c when it is a lowercase wide character,
otherwise, it returns the input character.

Portability

towupper is C99.

No supporting OS subroutines are required.

88 Red Hat newlib C Library, Full

3.31 towctrans|extensible wide-character translation

Synopsis

#include <wctype.h>

wint_t towctrans(wint_t c, wctrans_t w);

Description

towctrans is a function which converts wide characters based on a speci�ed translation
type w. If the translation type is invalid or cannot be applied to the current character, no
change to the character is made.

Returns

towctrans returns the translated equivalent of c when it is a valid for the given translation,
otherwise, it returns the input character. When the translation type is invalid, errno is set
EINVAL.

Portability

towctrans is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (`ctype.h') 89

3.32 wctrans|get wide-character translation type

Synopsis

#include <wctype.h>

wctrans_t wctrans(const char *c);

Description

wctrans is a function which takes a string c and gives back the appropriate wctrans t type
value associated with the string, if one exists. The following values are guaranteed to be
recognized: "tolower" and "toupper".

Returns

wctrans returns 0 and sets errno to EINVAL if the given name is invalid. Otherwise, it
returns a valid non-zero wctrans t value.

Portability

wctrans is C99.

No supporting OS subroutines are required.

90 Red Hat newlib C Library, Full

Chapter 4: Input and Output (`stdio.h') 91

4 Input and Output (`stdio.h')

This chapter comprises functions to manage �les or other input/output streams. Among
these functions are subroutines to generate or scan strings according to speci�cations from
a format string.

The underlying facilities for input and output depend on the host system, but these functions
provide a uniform interface.

The corresponding declarations are in `stdio.h'.

The reentrant versions of these functions use macros

_stdin_r(reent)

_stdout_r(reent)

_stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument <[reent]> is a pointer to
a reentrancy structure.

92 Red Hat newlib C Library, Full

4.1 clearerr|clear �le or stream error indicator

Synopsis

#include <stdio.h>

void clearerr(FILE *fp);

Description

The stdio functions maintain an error indicator with each �le pointer fp, to record whether
any read or write errors have occurred on the associated �le or stream. Similarly, it main-
tains an end-of-�le indicator to record whether there is no more data in the �le.

Use clearerr to reset both of these indicators.

See ferror and feof to query the two indicators.

Returns

clearerr does not return a result.

Portability

ANSI C requires clearerr.

No supporting OS subroutines are required.

Chapter 4: Input and Output (`stdio.h') 93

4.2 diprintf, vdiprintf|print to a �le descriptor (integer
only)

Synopsis

#include <stdio.h>

#include <stdarg.h>

int diprintf(int fd, const char *format, ...);

int vdiprintf(int fd, const char *format, va_list ap);

int _diprintf_r(struct _reent *ptr, int fd,

const char *format, ...);

int _vidprintf_r(struct _reent *ptr, int fd,

const char *format, va_list ap);

Description

diprintf and vdiprintf are similar to dprintf and vdprintf, except that only integer
format speci�ers are processed.

The functions _diprintf_r and _vdiprintf_r are simply reentrant versions of the func-
tions above.

Returns

Similar to dprintf and vdprintf.

Portability

This set of functions is an integer-only extension, and is not portable.

Supporting OS subroutines required: sbrk, write.

94 Red Hat newlib C Library, Full

4.3 dprintf, vdprintf|print to a �le descriptor

Synopsis

#include <stdio.h>

#include <stdarg.h>

int dprintf(int fd, const char *format, ...);

int vdprintf(int fd, const char *format, va_list ap);

int _dprintf_r(struct _reent *ptr, int fd,

const char *format, ...);

int _vdprintf_r(struct _reent *ptr, int fd,

const char *format, va_list ap);

Description

dprintf and vdprintf allow printing a format, similarly to printf, but write to a �le
descriptor instead of to a FILE stream.

The functions _dprintf_r and _vdprintf_r are simply reentrant versions of the functions
above.

Returns

The return value and errors are exactly as for write, except that errno may also be set to
ENOMEM if the heap is exhausted.

Portability

This function is originally a GNU extension in glibc and is not portable.

Supporting OS subroutines required: sbrk, write.

Chapter 4: Input and Output (`stdio.h') 95

4.4 fclose|close a �le

Synopsis

#include <stdio.h>

int fclose(FILE *fp);

int _fclose_r(struct _reent *reent, FILE *fp);

Description

If the �le or stream identi�ed by fp is open, fclose closes it, after �rst ensuring that any
pending data is written (by calling fflush(fp)).

The alternate function _fclose_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

fclose returns 0 if successful (including when fp is NULL or not an open �le); otherwise, it
returns EOF.

Portability

fclose is required by ANSI C.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

96 Red Hat newlib C Library, Full

4.5 fcloseall|close all �les

Synopsis

#include <stdio.h>

int fcloseall(void);

int _fcloseall_r (struct _reent *ptr);

Description

fcloseall closes all �les in the current reentrancy struct's domain. The function
_fcloseall_r is the same function, except the reentrancy struct is passed in as the ptr

argument.

This function is not recommended as it closes all streams, including the std streams.

Returns

fclose returns 0 if all closes are successful. Otherwise, EOF is returned.

Portability

fcloseall is a glibc extension.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 97

4.6 fdopen|turn open �le into a stream

Synopsis

#include <stdio.h>

FILE *fdopen(int fd, const char *mode);

FILE *_fdopen_r(struct _reent *reent,

int fd, const char *mode);

Description

fdopen produces a �le descriptor of type FILE *, from a descriptor for an already-open �le
(returned, for example, by the system subroutine open rather than by fopen). The mode

argument has the same meanings as in fopen.

Returns

File pointer or NULL, as for fopen.

Portability

fdopen is ANSI.

98 Red Hat newlib C Library, Full

4.7 feof|test for end of �le

Synopsis

#include <stdio.h>

int feof(FILE *fp);

Description

feof tests whether or not the end of the �le identi�ed by fp has been reached.

Returns

feof returns 0 if the end of �le has not yet been reached; if at end of �le, the result is
nonzero.

Portability

feof is required by ANSI C.

No supporting OS subroutines are required.

Chapter 4: Input and Output (`stdio.h') 99

4.8 ferror|test whether read/write error has occurred

Synopsis

#include <stdio.h>

int ferror(FILE *fp);

Description

The stdio functions maintain an error indicator with each �le pointer fp, to record whether
any read or write errors have occurred on the associated �le or stream. Use ferror to query
this indicator.

See clearerr to reset the error indicator.

Returns

ferror returns 0 if no errors have occurred; it returns a nonzero value otherwise.

Portability

ANSI C requires ferror.

No supporting OS subroutines are required.

100 Red Hat newlib C Library, Full

4.9 fflush|ush bu�ered �le output

Synopsis

#include <stdio.h>

int fflush(FILE *fp);

int _fflush_r(struct _reent *reent, FILE *fp);

Description

The stdio output functions can bu�er output before delivering it to the host system, in
order to minimize the overhead of system calls.

Use fflush to deliver any such pending output (for the �le or stream identi�ed by fp) to
the host system.

If fp is NULL, fflush delivers pending output from all open �les.

Additionally, if fp is a seekable input stream visiting a �le descriptor, set the position of
the �le descriptor to match next unread byte, useful for obeying POSIX semantics when
ending a process without consuming all input from the stream.

The alternate function _fflush_r is a reentrant version, where the extra argument reent is
a pointer to a reentrancy structure, and fp must not be NULL.

Returns

fflush returns 0 unless it encounters a write error; in that situation, it returns EOF.

Portability

ANSI C requires fflush. The behavior on input streams is only speci�ed by POSIX, and
not all implementations follow POSIX rules.

No supporting OS subroutines are required.

Chapter 4: Input and Output (`stdio.h') 101

4.10 fgetc|get a character from a �le or stream

Synopsis

#include <stdio.h>

int fgetc(FILE *fp);

#include <stdio.h>

int _fgetc_r(struct _reent *ptr, FILE *fp);

Description

Use fgetc to get the next single character from the �le or stream identi�ed by fp. As a
side e�ect, fgetc advances the �le's current position indicator.

For a macro version of this function, see getc.

The function _fgetc_r is simply a reentrant version of fgetc that is passed the additional
reentrant structure pointer argument: ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, fgetc returns
EOF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability

ANSI C requires fgetc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

102 Red Hat newlib C Library, Full

4.11 fgetpos|record position in a stream or �le

Synopsis

#include <stdio.h>

int fgetpos(FILE *fp, fpos_t *pos);

int _fgetpos_r(struct _reent *ptr, FILE *fp, fpos_t *pos);

Description

Objects of type FILE can have a \position" that records how much of the �le your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side e�ect.

You can use fgetpos to report on the current position for a �le identi�ed by fp; fgetpos
will write a value representing that position at *pos . Later, you can use this value with
fsetpos to return the �le to this position.

In the current implementation, fgetpos simply uses a character count to represent the �le
position; this is the same number that would be returned by ftell.

Returns

fgetpos returns 0 when successful. If fgetpos fails, the result is 1. Failure occurs on
streams that do not support positioning; the global errno indicates this condition with the
value ESPIPE.

Portability

fgetpos is required by the ANSI C standard, but the meaning of the value it records is not
speci�ed beyond requiring that it be acceptable as an argument to fsetpos. In particular,
other conforming C implementations may return a di�erent result from ftell than what
fgetpos writes at *pos .

No supporting OS subroutines are required.

Chapter 4: Input and Output (`stdio.h') 103

4.12 fgets|get character string from a �le or stream

Synopsis

#include <stdio.h>

char *fgets(char *buf, int n, FILE *fp);

#include <stdio.h>

char *_fgets_r(struct _reent *ptr, char *buf, int n, FILE *fp);

Description

Reads at most n-1 characters from fp until a newline is found. The characters including to
the newline are stored in buf. The bu�er is terminated with a 0.

The _fgets_r function is simply the reentrant version of fgets and is passed an additional
reentrancy structure pointer: ptr.

Returns

fgets returns the bu�er passed to it, with the data �lled in. If end of �le occurs with some
data already accumulated, the data is returned with no other indication. If no data are
read, NULL is returned instead.

Portability

fgets should replace all uses of gets. Note however that fgets returns all of the data,
while gets removes the trailing newline (with no indication that it has done so.)

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

104 Red Hat newlib C Library, Full

4.13 fileno|return �le descriptor associated with stream

Synopsis

#include <stdio.h>

int fileno(FILE *fp);

Description

You can use fileno to return the �le descriptor identi�ed by fp.

Returns

fileno returns a non-negative integer when successful. If fp is not an open stream, fileno
returns -1.

Portability

fileno is not part of ANSI C. POSIX requires fileno.

Supporting OS subroutines required: none.

Chapter 4: Input and Output (`stdio.h') 105

4.14 fmemopen|open a stream around a �xed-length string

Synopsis

#include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,

const char *restrict mode);

Description

fmemopen creates a seekable FILE stream that wraps a �xed-length bu�er of size bytes
starting at buf. The stream is opened with mode treated as in fopen, where append mode
starts writing at the �rst NUL byte. If buf is NULL, then size bytes are automatically
provided as if by malloc, with the initial size of 0, and mode must contain + so that data
can be read after it is written.

The stream maintains a current position, which moves according to bytes read or written,
and which can be one past the end of the array. The stream also maintains a current �le
size, which is never greater than size. If mode starts with r, the position starts at 0, and
�le size starts at size if buf was provided. If mode starts with w, the position and �le size
start at 0, and if buf was provided, the �rst byte is set to NUL. If mode starts with a,
the position and �le size start at the location of the �rst NUL byte, or else size if buf was
provided.

When reading, NUL bytes have no signi�cance, and reads cannot exceed the current �le
size. When writing, the �le size can increase up to size as needed, and NUL bytes may be
embedded in the stream (see open_memstream for an alternative that automatically enlarges
the bu�er). When the stream is ushed or closed after a write that changed the �le size,
a NUL byte is written at the current position if there is still room; if the stream is not
also open for reading, a NUL byte is additionally written at the last byte of buf when the
stream has exceeded size, so that a write-only buf is always NUL-terminated when the
stream is ushed or closed (and the initial size should take this into account). It is not
possible to seek outside the bounds of size. A NUL byte written during a ush is restored
to its previous value when seeking elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno

will be set to EINVAL if size is zero or mode is invalid, ENOMEM if buf was NULL and
memory could not be allocated, or EMFILE if too many streams are already open.

Portability

This function is being added to POSIX 200x, but is not in POSIX 2001.

Supporting OS subroutines required: sbrk.

106 Red Hat newlib C Library, Full

4.15 fopen|open a �le

Synopsis

#include <stdio.h>

FILE *fopen(const char *file, const char *mode);

FILE *_fopen_r(struct _reent *reent,

const char *file, const char *mode);

Description

fopen initializes the data structures needed to read or write a �le. Specify the �le's name
as the string at �le, and the kind of access you need to the �le with the string at mode.

The alternate function _fopen_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Three fundamental kinds of access are available: read, write, and append. *mode must
begin with one of the three characters `r', `w', or `a', to select one of these:

r Open the �le for reading; the operation will fail if the �le does not exist, or if
the host system does not permit you to read it.

w Open the �le for writing from the beginning of the �le: e�ectively, this always
creates a new �le. If the �le whose name you speci�ed already existed, its old
contents are discarded.

a Open the �le for appending data, that is writing from the end of �le. When
you open a �le this way, all data always goes to the current end of �le; you
cannot change this using fseek.

Some host systems distinguish between \binary" and \text" �les. Such systems may perform
data transformations on data written to, or read from, �les opened as \text". If your system
is one of these, then you can append a `b' to any of the three modes above, to specify that
you are opening the �le as a binary �le (the default is to open the �le as a text �le).

`rb', then, means \read binary"; `wb', \write binary"; and `ab', \append binary".

To make C programs more portable, the `b' is accepted on all systems, whether or not it
makes a di�erence.

Finally, you might need to both read and write from the same �le. You can also append a
`+' to any of the three modes, to permit this. (If you want to append both `b' and `+', you
can do it in either order: for example, "rb+" means the same thing as "r+b" when used as
a mode string.)

Use "r+" (or "rb+") to permit reading and writing anywhere in an existing �le, without
discarding any data; "w+" (or "wb+") to create a new �le (or begin by discarding all data
from an old one) that permits reading and writing anywhere in it; and "a+" (or "ab+") to
permit reading anywhere in an existing �le, but writing only at the end.

Returns

fopen returns a �le pointer which you can use for other �le operations, unless the �le you
requested could not be opened; in that situation, the result is NULL. If the reason for failure
was an invalid string at mode, errno is set to EINVAL.

Chapter 4: Input and Output (`stdio.h') 107

Portability

fopen is required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk,
write.

108 Red Hat newlib C Library, Full

4.16 fopencookie|open a stream with custom callbacks

Synopsis

#include <stdio.h>

typedef ssize_t (*cookie_read_function_t)(void *_cookie, char *_buf,

size_t _n);

typedef ssize_t (*cookie_write_function_t)(void *_cookie,

const char *_buf, size_t _n);

typedef int (*cookie_seek_function_t)(void *_cookie, off_t *_off,

int _whence);

typedef int (*cookie_close_function_t)(void *_cookie);

FILE *fopencookie(const void *cookie, const char *mode,

cookie_io_functions_t functions);

Description

fopencookie creates a FILE stream where I/O is performed using custom callbacks. The
callbacks are registered via the structure:

typedef struct
{
cookie_read_function_t *read;
cookie_write_function_t *write;
cookie_seek_function_t *seek;
cookie_close_function_t *close;
} cookie_io_functions_t;

The stream is opened with mode treated as in fopen. The callbacks functions.read and
functions.write may only be NULL when mode does not require them.

functions.read should return -1 on failure, or else the number of bytes read (0 on EOF). It
is similar to read, except that cookie will be passed as the �rst argument.

functions.write should return -1 on failure, or else the number of bytes written. It is similar
to write, except that cookie will be passed as the �rst argument.

functions.seek should return -1 on failure, and 0 on success, with o� set to the current �le
position. It is a cross between lseek and fseek, with the whence argument interpreted
in the same manner. A NULL functions.seek makes the stream behave similarly to a pipe
in relation to stdio functions that require positioning.

functions.close should return -1 on failure, or 0 on success. It is similar to close, except
that cookie will be passed as the �rst argument. A NULL functions.close merely ushes all
data then lets fclose succeed. A failed close will still invalidate the stream.

Read and write I/O functions are allowed to change the underlying bu�er on fully bu�ered
or line bu�ered streams by calling setvbuf. They are also not required to completely �ll
or empty the bu�er. They are not, however, allowed to change streams from unbu�ered to
bu�ered or to change the state of the line bu�ering ag. They must also be prepared to
have read or write calls occur on bu�ers other than the one most recently speci�ed.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno

will be set to EINVAL if a function pointer is missing or mode is invalid, ENOMEM if the
stream cannot be created, or EMFILE if too many streams are already open.

Chapter 4: Input and Output (`stdio.h') 109

Portability

This function is a newlib extension, copying the prototype from Linux. It is not portable.
See also the funopen interface from BSD.

Supporting OS subroutines required: sbrk.

110 Red Hat newlib C Library, Full

4.17 fputc|write a character on a stream or �le

Synopsis

#include <stdio.h>

int fputc(int ch, FILE *fp);

#include <stdio.h>

int _fputc_r(struct _rent *ptr, int ch, FILE *fp);

Description

fputc converts the argument ch from an int to an unsigned char, then writes it to the
�le or stream identi�ed by fp.

If the �le was opened with append mode (or if the stream cannot support positioning), then
the new character goes at the end of the �le or stream. Otherwise, the new character is
written at the current value of the position indicator, and the position indicator oadvances
by one.

For a macro version of this function, see putc.

The _fputc_r function is simply a reentrant version of fputc that takes an additional
reentrant structure argument: ptr.

Returns

If successful, fputc returns its argument ch. If an error intervenes, the result is EOF. You
can use `ferror(fp)' to query for errors.

Portability

fputc is required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 111

4.18 fputs|write a character string in a �le or stream

Synopsis

#include <stdio.h>

int fputs(const char *s, FILE *fp);

#include <stdio.h>

int _fputs_r(struct _reent *ptr, const char *s, FILE *fp);

Description

fputs writes the string at s (but without the trailing null) to the �le or stream identi�ed
by fp.

_fputs_r is simply the reentrant version of fputs that takes an additional reentrant struct
pointer argument: ptr.

Returns

If successful, the result is 0; otherwise, the result is EOF.

Portability

ANSI C requires fputs, but does not specify that the result on success must be 0; any
non-negative value is permitted.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

112 Red Hat newlib C Library, Full

4.19 fread|read array elements from a �le

Synopsis

#include <stdio.h>

size_t fread(void *buf, size_t size, size_t count,

FILE *fp);

#include <stdio.h>

size_t _fread_r(struct _reent *ptr, void *buf,

size_t size, size_t count,

FILE *fp);

Description

fread attempts to copy, from the �le or stream identi�ed by fp, count elements (each of
size size) into memory, starting at buf. fread may copy fewer elements than count if an
error, or end of �le, intervenes.

fread also advances the �le position indicator (if any) for fp by the number of characters
actually read.

_fread_r is simply the reentrant version of fread that takes an additional reentrant struc-
ture pointer argument: ptr.

Returns

The result of fread is the number of elements it succeeded in reading.

Portability

ANSI C requires fread.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 113

4.20 freopen|open a �le using an existing �le descriptor

Synopsis

#include <stdio.h>

FILE *freopen(const char *file, const char *mode,

FILE *fp);

FILE *_freopen_r(struct _reent *ptr, const char *file,

const char *mode, FILE *fp);

Description

Use this variant of fopen if you wish to specify a particular �le descriptor fp (notably stdin,
stdout, or stderr) for the �le.

If fp was associated with another �le or stream, freopen closes that other �le or stream
(but ignores any errors while closing it).

�le and mode are used just as in fopen.

If �le is NULL, the underlying stream is modi�ed rather than closed. The �le cannot be
given a more permissive access mode (for example, a mode of "w" will fail on a read-only
�le descriptor), but can change status such as append or binary mode. If modi�cation is
not possible, failure occurs.

Returns

If successful, the result is the same as the argument fp. If the �le cannot be opened as
speci�ed, the result is NULL.

Portability

ANSI C requires freopen.

Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk,
write.

114 Red Hat newlib C Library, Full

4.21 fseek, fseeko|set �le position

Synopsis

#include <stdio.h>

int fseek(FILE *fp, long offset, int whence)

int fseeko(FILE *fp, off_t offset, int whence)

int _fseek_r(struct _reent *ptr, FILE *fp,

long offset, int whence)

int _fseeko_r(struct _reent *ptr, FILE *fp,

off_t offset, int whence)

Description

Objects of type FILE can have a \position" that records how much of the �le your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side e�ect.

You can use fseek/fseeko to set the position for the �le identi�ed by fp. The value of
o�set determines the new position, in one of three ways selected by the value of whence
(de�ned as macros in `stdio.h'):

SEEK_SET|o�set is the absolute �le position (an o�set from the beginning of the �le)
desired. o�set must be positive.

SEEK_CUR|o�set is relative to the current �le position. o�set can meaningfully be either
positive or negative.

SEEK_END|o�set is relative to the current end of �le. o�set can meaningfully be either
positive (to increase the size of the �le) or negative.

See ftell/ftello to determine the current �le position.

Returns

fseek/fseeko return 0 when successful. On failure, the result is EOF. The reason for
failure is indicated in errno: either ESPIPE (the stream identi�ed by fp doesn't support
repositioning) or EINVAL (invalid �le position).

Portability

ANSI C requires fseek.

fseeko is de�ned by the Single Unix speci�cation.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 115

4.22 fsetpos|restore position of a stream or �le

Synopsis

#include <stdio.h>

int fsetpos(FILE *fp, const fpos_t *pos);

int _fsetpos_r(struct _reent *ptr, FILE *fp, l

const fpos_t *pos);

Description

Objects of type FILE can have a \position" that records how much of the �le your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side e�ect.

You can use fsetpos to return the �le identi�ed by fp to a previous position *pos (after
�rst recording it with fgetpos).

See fseek for a similar facility.

Returns

fgetpos returns 0 when successful. If fgetpos fails, the result is 1. The reason for failure is
indicated in errno: either ESPIPE (the stream identi�ed by fp doesn't support repositioning)
or EINVAL (invalid �le position).

Portability

ANSI C requires fsetpos, but does not specify the nature of *pos beyond identifying it as
written by fgetpos.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

116 Red Hat newlib C Library, Full

4.23 ftell, ftello|return position in a stream or �le

Synopsis

#include <stdio.h>

long ftell(FILE *fp);

off_t ftello(FILE *fp);

long _ftell_r(struct _reent *ptr, FILE *fp);

off_t _ftello_r(struct _reent *ptr, FILE *fp);

Description

Objects of type FILE can have a \position" that records how much of the �le your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side e�ect.

The result of ftell/ftello is the current position for a �le identi�ed by fp. If you record
this result, you can later use it with fseek/fseeko to return the �le to this position. The
di�erence between ftell and ftello is that ftell returns long and ftello returns off_t.

In the current implementation, ftell/ftello simply uses a character count to represent
the �le position; this is the same number that would be recorded by fgetpos.

Returns

ftell/ftello return the �le position, if possible. If they cannot do this, they return -1L.
Failure occurs on streams that do not support positioning; the global errno indicates this
condition with the value ESPIPE.

Portability

ftell is required by the ANSI C standard, but the meaning of its result (when successful) is
not speci�ed beyond requiring that it be acceptable as an argument to fseek. In particular,
other conforming C implementations may return a di�erent result from ftell than what
fgetpos records.

ftello is de�ned by the Single Unix speci�cation.

No supporting OS subroutines are required.

Chapter 4: Input and Output (`stdio.h') 117

4.24 funopen, fropen, fwopen|open a stream with custom
callbacks

Synopsis

#include <stdio.h>

FILE *funopen(const void *cookie,

int (*readfn) (void *cookie, char *buf, int n),

int (*writefn) (void *cookie, const char *buf, int n),

fpos_t (*seekfn) (void *cookie, fpos_t off, int whence),

int (*closefn) (void *cookie));

FILE *fropen(const void *cookie,

int (*readfn) (void *cookie, char *buf, int n));

FILE *fwopen(const void *cookie,

int (*writefn) (void *cookie, const char *buf, int n));

Description

funopen creates a FILE stream where I/O is performed using custom callbacks. At least
one of readfn and writefn must be provided, which determines whether the stream behaves
with mode <"r">, <"w">, or <"r+">.

readfn should return -1 on failure, or else the number of bytes read (0 on EOF). It is similar
to read, except that <int> rather than <size t> bounds a transaction size, and cookie will
be passed as the �rst argument. A NULL readfn makes attempts to read the stream fail.

writefn should return -1 on failure, or else the number of bytes written. It is similar to
write, except that <int> rather than <size t> bounds a transaction size, and cookie will be
passed as the �rst argument. A NULL writefn makes attempts to write the stream fail.

seekfn should return (fpos t)-1 on failure, or else the current �le position. It is similar to
lseek, except that cookie will be passed as the �rst argument. A NULL seekfn makes the
stream behave similarly to a pipe in relation to stdio functions that require positioning.
This implementation assumes fpos t and o� t are the same type.

closefn should return -1 on failure, or 0 on success. It is similar to close, except that
cookie will be passed as the �rst argument. A NULL closefn merely ushes all data then
lets fclose succeed. A failed close will still invalidate the stream.

Read and write I/O functions are allowed to change the underlying bu�er on fully bu�ered
or line bu�ered streams by calling setvbuf. They are also not required to completely �ll
or empty the bu�er. They are not, however, allowed to change streams from unbu�ered to
bu�ered or to change the state of the line bu�ering ag. They must also be prepared to
have read or write calls occur on bu�ers other than the one most recently speci�ed.

The functions fropen and fwopen are convenience macros around funopen that only use
the speci�ed callback.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno

will be set to EINVAL if a function pointer is missing, ENOMEM if the stream cannot be
created, or EMFILE if too many streams are already open.

Portability

118 Red Hat newlib C Library, Full

This function is a newlib extension, copying the prototype from BSD. It is not portable.
See also the fopencookie interface from Linux.

Supporting OS subroutines required: sbrk.

Chapter 4: Input and Output (`stdio.h') 119

4.25 fwrite|write array elements

Synopsis

#include <stdio.h>

size_t fwrite(const void *buf, size_t size,

size_t count, FILE *fp);

#include <stdio.h>

size_t _fwrite_r(struct _reent *ptr, const void *buf, size_t size,

size_t count, FILE *fp);

Description

fwrite attempts to copy, starting from the memory location buf, count elements (each of
size size) into the �le or stream identi�ed by fp. fwrite may copy fewer elements than
count if an error intervenes.

fwrite also advances the �le position indicator (if any) for fp by the number of characters
actually written.

_fwrite_r is simply the reentrant version of fwrite that takes an additional reentrant
structure argument: ptr.

Returns

If fwrite succeeds in writing all the elements you specify, the result is the same as the
argument count. In any event, the result is the number of complete elements that fwrite
copied to the �le.

Portability

ANSI C requires fwrite.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

120 Red Hat newlib C Library, Full

4.26 getc|read a character (macro)

Synopsis

#include <stdio.h>

int getc(FILE *fp);

#include <stdio.h>

int _getc_r(struct _reent *ptr, FILE *fp);

Description

getc is a macro, de�ned in stdio.h. You can use getc to get the next single character
from the �le or stream identi�ed by fp. As a side e�ect, getc advances the �le's current
position indicator.

For a subroutine version of this macro, see fgetc.

The _getc_r function is simply the reentrant version of getc which passes an additional
reentrancy structure pointer argument: ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, getc returns
EOF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability

ANSI C requires getc; it suggests, but does not require, that getc be implemented as a
macro. The standard explicitly permits macro implementations of getc to use the argument
more than once; therefore, in a portable program, you should not use an expression with
side e�ects as the getc argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 121

4.27 getc_unlocked|non-thread-safe version of getc (macro)

Description

getc_unlocked is a non-thread-safe version of getc declared in stdio.h. getc_unlocked
may only safely be used within a scope protected by ock�le() (or ftrylock�le()) and fun-
lock�le(). These functions may safely be used in a multi-threaded program if and only if
they are called while the invoking thread owns the (FILE *) object, as is the case after
a successful call to the ock�le() or ftrylock�le() functions. If threads are disabled, then
getc_unlocked is equivalent to getc.

The _getc_unlocked_r function is simply the reentrant version of get_unlocked which
passes an additional reentrancy structure pointer argument: ptr.

Returns

See getc.

Portability

POSIX 1003.1 requires getc_unlocked. getc_unlocked may be implemented as a macro,
so arguments should not have side-e�ects.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

122 Red Hat newlib C Library, Full

4.28 getchar|read a character (macro)

Synopsis

#include <stdio.h>

int getchar(void);

int _getchar_r(struct _reent *reent);

Description

getchar is a macro, de�ned in stdio.h. You can use getchar to get the next single
character from the standard input stream. As a side e�ect, getchar advances the standard
input's current position indicator.

The alternate function _getchar_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, getchar returns
EOF.

You can distinguish the two situations that cause an EOF result by using `ferror(stdin)'
and `feof(stdin)'.

Portability

ANSI C requires getchar; it suggests, but does not require, that getchar be implemented
as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 123

4.29 getchar_unlocked|non-thread-safe version of getchar
(macro)

Description

getchar_unlocked is a non-thread-safe version of getchar declared in stdio.h. getchar_
unlocked may only safely be used within a scope protected by ock�le() (or ftrylock�le())
and funlock�le(). These functions may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case
after a successful call to the ock�le() or ftrylock�le() functions. If threads are disabled,
then getchar_unlocked is equivalent to getchar.

The _getchar_unlocked_r function is simply the reentrant version of getchar_unlocked
which passes an addtional reentrancy structure pointer argument: ptr.

Returns

See getchar.

Portability

POSIX 1003.1 requires getchar_unlocked. getchar_unlocked may be implemented as a
macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

124 Red Hat newlib C Library, Full

4.30 getdelim|read a line up to a speci�ed line delimiter

Synopsis

#include <stdio.h>

int getdelim(char **bufptr, size_t *n,

int delim, FILE *fp);

Description

getdelim reads a �le fp up to and possibly including a speci�ed delimiter delim. The line
is read into a bu�er pointed to by bufptr and designated with size *n. If the bu�er is not
large enough, it will be dynamically grown by getdelim. As the bu�er is grown, the pointer
to the size n will be updated.

Returns

getdelim returns -1 if no characters were successfully read; otherwise, it returns the number
of bytes successfully read. At end of �le, the result is nonzero.

Portability

getdelim is a glibc extension.

No supporting OS subroutines are directly required.

Chapter 4: Input and Output (`stdio.h') 125

4.31 getline|read a line from a �le

Synopsis

#include <stdio.h>

ssize_t getline(char **bufptr, size_t *n, FILE *fp);

Description

getline reads a �le fp up to and possibly including the newline character. The line is read
into a bu�er pointed to by bufptr and designated with size *n. If the bu�er is not large
enough, it will be dynamically grown by getdelim. As the bu�er is grown, the pointer to
the size n will be updated.

getline is equivalent to getdelim(bufptr, n, '\n', fp);

Returns

getline returns -1 if no characters were successfully read, otherwise, it returns the number
of bytes successfully read. at end of �le, the result is nonzero.

Portability

getline is a glibc extension.

No supporting OS subroutines are directly required.

126 Red Hat newlib C Library, Full

4.32 gets|get character string (obsolete, use fgets instead)

Synopsis

#include <stdio.h>

char *gets(char *buf);

char *_gets_r(struct _reent *reent, char *buf);

Description

Reads characters from standard input until a newline is found. The characters up to the
newline are stored in buf. The newline is discarded, and the bu�er is terminated with a 0.

This is a dangerous function, as it has no way of checking the amount of space available in
buf. One of the attacks used by the Internet Worm of 1988 used this to overrun a bu�er
allocated on the stack of the �nger daemon and overwrite the return address, causing the
daemon to execute code downloaded into it over the connection.

The alternate function _gets_r is a reentrant version. The extra argument reent is a pointer
to a reentrancy structure.

Returns

gets returns the bu�er passed to it, with the data �lled in. If end of �le occurs with some
data already accumulated, the data is returned with no other indication. If end of �le occurs
with no data in the bu�er, NULL is returned.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 127

4.33 getw|read a word (int)

Synopsis

#include <stdio.h>

int getw(FILE *fp);

Description

getw is a function, de�ned in stdio.h. You can use getw to get the next word from the
�le or stream identi�ed by fp. As a side e�ect, getw advances the �le's current position
indicator.

Returns

The next word (read as an int), unless there is no more data or the host system reports
a read error; in either of these situations, getw returns EOF. Since EOF is a valid int, you
must use ferror or feof to distinguish these situations.

Portability

getw is a remnant of K&R C; it is not part of any ISO C Standard. fread should be used
instead. In fact, this implementation of getw is based upon fread.

Supporting OS subroutines required: fread.

128 Red Hat newlib C Library, Full

4.34 mktemp, mkstemp|generate unused �le name

Synopsis

#include <stdio.h>

char *mktemp(char *path);

int mkstemp(char *path);

char *_mktemp_r(struct _reent *reent, char *path);

int *_mkstemp_r(struct _reent *reent, char *path);

Description

mktemp and mkstemp attempt to generate a �le name that is not yet in use for any existing
�le. mkstemp creates the �le and opens it for reading and writing; mktemp simply generates
the �le name.

You supply a simple pattern for the generated �le name, as the string at path. The pattern
should be a valid �lename (including path information if you wish) ending with some number
of `X' characters. The generated �lename will match the leading part of the name you supply,
with the trailing `X' characters replaced by some combination of digits and letters.

The alternate functions _mktemp_r and _mkstemp_r are reentrant versions. The extra
argument reent is a pointer to a reentrancy structure.

Returns

mktemp returns the pointer path to the modi�ed string representing an unused �lename,
unless it could not generate one, or the pattern you provided is not suitable for a �lename;
in that case, it returns NULL.

mkstemp returns a �le descriptor to the newly created �le, unless it could not generate an
unused �lename, or the pattern you provided is not suitable for a �lename; in that case, it
returns -1.

Portability

ANSI C does not require either mktemp or mkstemp; the System V Interface De�nition
requires mktemp as of Issue 2.

Supporting OS subroutines required: getpid, open, stat.

Chapter 4: Input and Output (`stdio.h') 129

4.35 open_memstream|open a write stream around an
arbitrary-length string

Synopsis

#include <stdio.h>

FILE *open_memstream(char **restrict buf,

size_t *restrict size);

Description

open_memstream creates a seekable FILE stream that wraps an arbitrary-length bu�er,
created as if by malloc. The current contents of *buf are ignored; this implementation
uses *size as a hint of the maximum size expected, but does not fail if the hint was wrong.
The parameters buf and size are later stored through following any call to fflush or fclose,
set to the current address and usable size of the allocated string; although after �ush, the
pointer is only valid until another stream operation that results in a write. Behavior is
unde�ned if the user alters either *buf or *size prior to fclose.

The stream is write-only, since the user can directly read *buf after a ush; see fmemopen
for a way to wrap a string with a readable stream. The user is responsible for calling free

on the �nal *buf after fclose.

Any time the stream is ushed, a NUL byte is written at the current position (but is not
counted in the bu�er length), so that the string is always NUL-terminated after at most
*size bytes. However, data previously written beyond the current stream o�set is not lost,
and the NUL byte written during a ush is restored to its previous value when seeking
elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno

will be set to EINVAL if buf or size is NULL, ENOMEM if memory could not be allocated,
or EMFILE if too many streams are already open.

Portability

This function is being added to POSIX 200x, but is not in POSIX 2001.

Supporting OS subroutines required: sbrk.

130 Red Hat newlib C Library, Full

4.36 perror|print an error message on standard error

Synopsis

#include <stdio.h>

void perror(char *prefix);

void _perror_r(struct _reent *reent, char *prefix);

Description

Use perror to print (on standard error) an error message corresponding to the current value
of the global variable errno. Unless you use NULL as the value of the argument pre�x, the
error message will begin with the string at pre�x, followed by a colon and a space (:). The
remainder of the error message is one of the strings described for strerror.

The alternate function _perror_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

perror returns no result.

Portability

ANSI C requires perror, but the strings issued vary from one implementation to another.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 131

4.37 putc|write a character (macro)

Synopsis

#include <stdio.h>

int putc(int ch, FILE *fp);

#include <stdio.h>

int _putc_r(struct _reent *ptr, int ch, FILE *fp);

Description

putc is a macro, de�ned in stdio.h. putc writes the argument ch to the �le or stream
identi�ed by fp, after converting it from an int to an unsigned char.

If the �le was opened with append mode (or if the stream cannot support positioning), then
the new character goes at the end of the �le or stream. Otherwise, the new character is
written at the current value of the position indicator, and the position indicator advances
by one.

For a subroutine version of this macro, see fputc.

The _putc_r function is simply the reentrant version of putc that takes an additional
reentrant structure argument: ptr.

Returns

If successful, putc returns its argument ch. If an error intervenes, the result is EOF. You
can use `ferror(fp)' to query for errors.

Portability

ANSI C requires putc; it suggests, but does not require, that putc be implemented as
a macro. The standard explicitly permits macro implementations of putc to use the fp

argument more than once; therefore, in a portable program, you should not use an expression
with side e�ects as this argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

132 Red Hat newlib C Library, Full

4.38 putc_unlocked|non-thread-safe version of putc (macro)

Description

putc_unlocked is a non-thread-safe version of putc declared in stdio.h. putc_unlocked
may only safely be used within a scope protected by ock�le() (or ftrylock�le()) and fun-
lock�le(). These functions may safely be used in a multi-threaded program if and only if
they are called while the invoking thread owns the (FILE *) object, as is the case after
a successful call to the ock�le() or ftrylock�le() functions. If threads are disabled, then
putc_unlocked is equivalent to putc.

The function _putc_unlocked_r is simply the reentrant version of putc_unlocked that
takes an additional reentrant structure pointer argument: ptr.

Returns

See putc.

Portability

POSIX 1003.1 requires putc_unlocked. putc_unlocked may be implemented as a macro,
so arguments should not have side-e�ects.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 133

4.39 putchar|write a character (macro)

Synopsis

#include <stdio.h>

int putchar(int ch);

int _putchar_r(struct _reent *reent, int ch);

Description

putchar is a macro, de�ned in stdio.h. putchar writes its argument to the standard
output stream, after converting it from an int to an unsigned char.

The alternate function _putchar_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

If successful, putchar returns its argument ch. If an error intervenes, the result is EOF. You
can use `ferror(stdin)' to query for errors.

Portability

ANSI C requires putchar; it suggests, but does not require, that putchar be implemented
as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

134 Red Hat newlib C Library, Full

4.40 putchar_unlocked|non-thread-safe version of putchar
(macro)

Description

putchar_unlocked is a non-thread-safe version of putchar declared in stdio.h. putchar_
unlocked may only safely be used within a scope protected by ock�le() (or ftrylock�le())
and funlock�le(). These functions may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case
after a successful call to the ock�le() or ftrylock�le() functions. If threads are disabled,
then putchar_unlocked is equivalent to putchar.

Returns

See putchar.

Portability

POSIX 1003.1 requires putchar_unlocked. putchar_unlocked may be implemented as a
macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 135

4.41 puts|write a character string

Synopsis

#include <stdio.h>

int puts(const char *s);

int _puts_r(struct _reent *reent, const char *s);

Description

puts writes the string at s (followed by a newline, instead of the trailing null) to the standard
output stream.

The alternate function _puts_r is a reentrant version. The extra argument reent is a pointer
to a reentrancy structure.

Returns

If successful, the result is a nonnegative integer; otherwise, the result is EOF.

Portability

ANSI C requires puts, but does not specify that the result on success must be 0; any
non-negative value is permitted.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

136 Red Hat newlib C Library, Full

4.42 putw|write a word (int)

Synopsis

#include <stdio.h>

int putw(int w, FILE *fp);

Description

putw is a function, de�ned in stdio.h. You can use putw to write a word to the �le or
stream identi�ed by fp. As a side e�ect, putw advances the �le's current position indicator.

Returns

Zero on success, EOF on failure.

Portability

putw is a remnant of K&R C; it is not part of any ISO C Standard. fwrite should be used
instead. In fact, this implementation of putw is based upon fwrite.

Supporting OS subroutines required: fwrite.

Chapter 4: Input and Output (`stdio.h') 137

4.43 remove|delete a �le's name

Synopsis

#include <stdio.h>

int remove(char *filename);

int _remove_r(struct _reent *reent, char *filename);

Description

Use remove to dissolve the association between a particular �lename (the string at �lename)
and the �le it represents. After calling remove with a particular �lename, you will no longer
be able to open the �le by that name.

In this implementation, you may use remove on an open �le without error; existing �le
descriptors for the �le will continue to access the �le's data until the program using them
closes the �le.

The alternate function _remove_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

remove returns 0 if it succeeds, -1 if it fails.

Portability

ANSI C requires remove, but only speci�es that the result on failure be nonzero. The
behavior of remove when you call it on an open �le may vary among implementations.

Supporting OS subroutine required: unlink.

138 Red Hat newlib C Library, Full

4.44 rename|rename a �le

Synopsis

#include <stdio.h>

int rename(const char *old, const char *new);

Description

Use rename to establish a new name (the string at new) for a �le now known by the string
at old. After a successful rename, the �le is no longer accessible by the string at old.

If rename fails, the �le named *old is una�ected. The conditions for failure depend on the
host operating system.

Returns

The result is either 0 (when successful) or -1 (when the �le could not be renamed).

Portability

ANSI C requires rename, but only speci�es that the result on failure be nonzero. The e�ects
of using the name of an existing �le as *new may vary from one implementation to another.

Supporting OS subroutines required: link, unlink, or rename.

Chapter 4: Input and Output (`stdio.h') 139

4.45 rewind|reinitialize a �le or stream

Synopsis

#include <stdio.h>

void rewind(FILE *fp);

void _rewind_r(struct _reent *ptr, FILE *fp);

Description

rewind returns the �le position indicator (if any) for the �le or stream identi�ed by fp to
the beginning of the �le. It also clears any error indicator and ushes any pending output.

Returns

rewind does not return a result.

Portability

ANSI C requires rewind.

No supporting OS subroutines are required.

140 Red Hat newlib C Library, Full

4.46 setbuf|specify full bu�ering for a �le or stream

Synopsis

#include <stdio.h>

void setbuf(FILE *fp, char *buf);

Description

setbuf speci�es that output to the �le or stream identi�ed by fp should be fully bu�ered.
All output for this �le will go to a bu�er (of size BUFSIZ, speci�ed in `stdio.h'). Output
will be passed on to the host system only when the bu�er is full, or when an input operation
intervenes.

You may, if you wish, supply your own bu�er by passing a pointer to it as the argument
buf. It must have size BUFSIZ. You can also use NULL as the value of buf, to signal that the
setbuf function is to allocate the bu�er.

Warnings

You may only use setbuf before performing any �le operation other than opening the �le.

If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identi�ed by fp.

Returns

setbuf does not return a result.

Portability

Both ANSI C and the System V Interface De�nition (Issue 2) require setbuf. However,
they di�er on the meaning of a NULL bu�er pointer: the SVID issue 2 speci�cation says that
a NULL bu�er pointer requests unbu�ered output. For maximum portability, avoid NULL

bu�er pointers.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 141

4.47 setbuffer|specify full bu�ering for a �le or stream
with size

Synopsis

#include <stdio.h>

void setbuffer(FILE *fp, char *buf, int size);

Description

setbuffer speci�es that output to the �le or stream identi�ed by fp should be fully bu�ered.
All output for this �le will go to a bu�er (of size size). Output will be passed on to the
host system only when the bu�er is full, or when an input operation intervenes.

You may, if you wish, supply your own bu�er by passing a pointer to it as the argument
buf. It must have size size. You can also use NULL as the value of buf, to signal that the
setbuffer function is to allocate the bu�er.

Warnings

You may only use setbuffer before performing any �le operation other than opening the
�le.

If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identi�ed by fp.

Returns

setbuffer does not return a result.

Portability

This function comes from BSD not ANSI or POSIX.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

142 Red Hat newlib C Library, Full

4.48 setlinebuf|specify line bu�ering for a �le or stream

Synopsis

#include <stdio.h>

void setlinebuf(FILE *fp);

Description

setlinebuf speci�es that output to the �le or stream identi�ed by fp should be line bu�ered.
This causes the �le or stream to pass on output to the host system at every newline, as well
as when the bu�er is full, or when an input operation intervenes.

Warnings

You may only use setlinebuf before performing any �le operation other than opening the
�le.

Returns

setlinebuf returns as per setvbuf.

Portability

This function comes from BSD not ANSI or POSIX.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 143

4.49 setvbuf|specify �le or stream bu�ering

Synopsis

#include <stdio.h>

int setvbuf(FILE *fp, char *buf,

int mode, size_t size);

Description

Use setvbuf to specify what kind of bu�ering you want for the �le or stream identi�ed by
fp, by using one of the following values (from stdio.h) as the mode argument:

_IONBF Do not use a bu�er: send output directly to the host system for the �le or
stream identi�ed by fp.

_IOFBF Use full output bu�ering: output will be passed on to the host system only
when the bu�er is full, or when an input operation intervenes.

_IOLBF Use line bu�ering: pass on output to the host system at every newline, as well
as when the bu�er is full, or when an input operation intervenes.

Use the size argument to specify how large a bu�er you wish. You can supply the bu�er
itself, if you wish, by passing a pointer to a suitable area of memory as buf. Otherwise, you
may pass NULL as the buf argument, and setvbuf will allocate the bu�er.

Warnings

You may only use setvbuf before performing any �le operation other than opening the �le.

If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identi�ed by fp.

Returns

A 0 result indicates success, EOF failure (invalid mode or size can cause failure).

Portability

Both ANSI C and the System V Interface De�nition (Issue 2) require setvbuf. However,
they di�er on the meaning of a NULL bu�er pointer: the SVID issue 2 speci�cation says that
a NULL bu�er pointer requests unbu�ered output. For maximum portability, avoid NULL

bu�er pointers.

Both speci�cations describe the result on failure only as a nonzero value.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

144 Red Hat newlib C Library, Full

4.50 siprintf, fiprintf, iprintf, sniprintf, asiprintf,
asniprintf|format output (integer only)

Synopsis

#include <stdio.h>

int iprintf(const char *format [, arg, ...]);

int fiprintf(FILE *fd, const char *format [, arg, ...]);

int siprintf(char *str, const char *format [, arg, ...]);

int sniprintf(char *str, size_t size, const char *format

[, arg, ...]);

int asiprintf(char **strp, const char *format [, arg, ...]);

char *asniprintf(char *str, size_t *size, const char *format

[, arg, ...]);

int _iprintf_r(struct _reent *ptr, const char *format

[, arg, ...]);

int _fiprintf_r(struct _reent *ptr, FILE *fd,

const char *format [, arg, ...]);

int _siprintf_r(struct _reent *ptr, char *str,

const char *format [, arg, ...]);

int _sniprintf_r(struct _reent *ptr, char *str, size_t size,

const char *format [, arg, ...]);

int _asiprintf_r(struct _reent *ptr, char **strp,

const char *format [, arg, ...]);

char *_asniprintf_r(struct _reent *ptr, char *str,

size_t *size, const char *format

[, arg, ...]);

Description

iprintf, fiprintf, siprintf, sniprintf, asiprintf, and asniprintf are the same as
printf, fprintf, sprintf, snprintf, asprintf, and asnprintf, respectively, except that
they restrict usage to non-oating-point format speci�ers.

_iprintf_r, _fiprintf_r, _asiprintf_r, _siprintf_r, _sniprintf_r, _asniprintf_r
are simply reentrant versions of the functions above.

Returns

Similar to printf, fprintf, sprintf, snprintf, asprintf, and asnprintf.

Portability

iprintf, fiprintf, siprintf, sniprintf, asiprintf, and asniprintf are newlib exten-
sions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 145

4.51 siscanf, fiscanf, iscanf|scan and format non-oating
input

Synopsis

#include <stdio.h>

int iscanf(const char *format [, arg, ...]);

int fiscanf(FILE *fd, const char *format [, arg, ...]);

int siscanf(const char *str, const char *format

[, arg, ...]);

int _iscanf_r(struct _reent *ptr, const char *format

[, arg, ...]);

int _fiscanf_r(struct _reent *ptr, FILE *fd, const char *format

[, arg, ...]);

int _siscanf_r(struct _reent *ptr, const char *str,

const char *format [, arg, ...]);

Description

iscanf, fiscanf, and siscanf are the same as scanf, fscanf, and sscanf respectively,
only that they restrict the available formats to non-oating-point format speci�ers.

The routines _iscanf_r, _fiscanf_r, and _siscanf_r are reentrant versions of iscanf,
fiscanf, and siscanf that take an additional �rst argument pointing to a reentrancy
structure.

Returns

iscanf returns the number of input �elds successfully scanned, converted and stored; the
return value does not include scanned �elds which were not stored.

If iscanf attempts to read at end-of-�le, the return value is EOF.

If no �elds were stored, the return value is 0.

Portability

iscanf, fiscanf, and siscanf are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

146 Red Hat newlib C Library, Full

4.52 sprintf, fprintf, printf, snprintf, asprintf,
asnprintf|format output

Synopsis

#include <stdio.h>

int printf(const char *format [, arg, ...]);

int fprintf(FILE *fd, const char *format [, arg, ...]);

int sprintf(char *str, const char *format [, arg, ...]);

int snprintf(char *str, size_t size, const char *format

[, arg, ...]);

int asprintf(char **strp, const char *format [, arg, ...]);

char *asnprintf(char *str, size_t *size, const char *format

[, arg, ...]);

int _printf_r(struct _reent *ptr, const char *format

[, arg, ...]);

int _fprintf_r(struct _reent *ptr, FILE *fd,

const char *format [, arg, ...]);

int _sprintf_r(struct _reent *ptr, char *str,

const char *format [, arg, ...]);

int _snprintf_r(struct _reent *ptr, char *str, size_t size,

const char *format [, arg, ...]);

int _asprintf_r(struct _reent *ptr, char **strp,

const char *format [, arg, ...]);

char *_asnprintf_r(struct _reent *ptr, char *str,

size_t *size, const char *format

[, arg, ...]);

Description

printf accepts a series of arguments, applies to each a format speci�er from *format , and
writes the formatted data to stdout, without a terminating NUL character. The behavior
of printf is unde�ned if there are not enough arguments for the format. printf returns
when it reaches the end of the format string. If there are more arguments than the format
requires, excess arguments are ignored.

fprintf is like printf, except that output is directed to the stream fd rather than stdout.

sprintf is like printf, except that output is directed to the bu�er str, and a terminating
NUL is output. Behavior is unde�ned if more output is generated than the bu�er can hold.

snprintf is like sprintf, except that output is limited to at most size bytes, including the
terminating NUL. As a special case, if size is 0, str can be NULL, and snprintf merely
calculates how many bytes would be printed.

asprintf is like sprintf, except that the output is stored in a dynamically allocated bu�er,
pstr, which should be freed later with free.

asnprintf is like sprintf, except that the return type is either the original str if it was
large enough, or a dynamically allocated string if the output exceeds *size; the length of
the result is returned in *size. When dynamic allocation occurs, the contents of the original
str may have been modi�ed.

Chapter 4: Input and Output (`stdio.h') 147

For sprintf, snprintf, and asnprintf, the behavior is unde�ned if the output *str

overlaps with one of the arguments. Behavior is also unde�ned if the argument for %n

within *format overlaps another argument.

format is a pointer to a character string containing two types of objects: ordinary characters
(other than %), which are copied unchanged to the output, and conversion speci�cations,
each of which is introduced by %. (To include % in the output, use %% in the format string.)
A conversion speci�cation has the following form:

%[pos][flags][width][.prec][size]type

The �elds of the conversion speci�cation have the following meanings:

� pos

Conversions normally consume arguments in the order that they are presented. How-
ever, it is possible to consume arguments out of order, and reuse an argument for more
than one conversion speci�cation (although the behavior is unde�ned if the same ar-
gument is requested with di�erent types), by specifying pos, which is a decimal integer
followed by '$'. The integer must be between 1 and <NL ARGMAX> from limits.h,
and if argument %n$ is requested, all earlier arguments must be requested somewhere
within format. If positional parameters are used, then all conversion speci�cations
except for %% must specify a position.

� ags

ags is an optional sequence of characters which control output justi�cation, numeric
signs, decimal points, trailing zeros, and octal and hex pre�xes. The ag characters
are minus (-), plus (+), space (), zero (0), sharp (#), and quote ('). They can appear
in any combination, although not all ags can be used for all conversion speci�cation
types.

' Since newlib only supports the C locale, this ag has no e�ect in this
implementation. But in other locales, when type is i, d, u, f, F, g, or G,
the locale-dependent thousand's separator is inserted prior to zero padding.

- The result of the conversion is left justi�ed, and the right is padded with
blanks. If you do not use this ag, the result is right justi�ed, and padded
on the left.

+ The result of a signed conversion (as determined by type of d, i, a, A, e,
E, f, F, g, or G) will always begin with a plus or minus sign. (If you do not
use this ag, positive values do not begin with a plus sign.)

" " (space)

If the �rst character of a signed conversion speci�cation is not a sign, or
if a signed conversion results in no characters, the result will begin with a
space. If the space () ag and the plus (+) ag both appear, the space ag
is ignored.

0 If the type character is d, i, o, u, x, X, a, A, e, E, f, g, or G: leading
zeros are used to pad the �eld width (following any indication of sign or
base); no spaces are used for padding. If the zero (0) and minus (-) ags
both appear, the zero (0) ag will be ignored. For d, i, o, u, x, and X

conversions, if a precision prec is speci�ed, the zero (0) ag is ignored.

Note that 0 is interpreted as a ag, not as the beginning of a �eld width.

148 Red Hat newlib C Library, Full

The result is to be converted to an alternative form, according to the type
character:

o Increases precision to force the �rst digit of the result to be a
zero.

x A non-zero result will have a 0x pre�x.

X A non-zero result will have a 0X pre�x.

a, A, e, E, f, or F

The result will always contain a decimal point even if no digits
follow the point. (Normally, a decimal point appears only if a
digit follows it.) Trailing zeros are removed.

g or G The result will always contain a decimal point even if no digits
follow the point. Trailing zeros are not removed.

all others

Unde�ned.

� width

width is an optional minimum �eld width. You can either specify it directly as a
decimal integer, or indirectly by using instead an asterisk (*), in which case an int

argument is used as the �eld width. If positional arguments are used, then the width
must also be speci�ed positionally as *m$, with m as a decimal integer. Negative �eld
widths are treated as specifying the minus (-) ag for left just�cation, along with a
positive �eld width. The resulting format may be wider than the speci�ed width.

� prec

prec is an optional �eld; if present, it is introduced with `.' (a period). You can specify
the precision either directly as a decimal integer or indirectly by using an asterisk (*),
in which case an int argument is used as the precision. If positional arguments are
used, then the precision must also be speci�ed positionally as *m$, with m as a decimal
integer. Supplying a negative precision is equivalent to omitting the precision. If only
a period is speci�ed the precision is zero. The e�ect depends on the conversion type.

d, i, o, u, x, or X

Minimum number of digits to appear. If no precision is given, defaults to
1.

a or A Number of digits to appear after the decimal point. If no precision is given,
the precision defaults to the minimum needed for an exact representation.

e, E, f or F

Number of digits to appear after the decimal point. If no precision is given,
the precision defaults to 6.

g or G Maximum number of signi�cant digits. A precision of 0 is treated the same
as a precision of 1. If no precision is given, the precision defaults to 6.

s or S Maximum number of characters to print from the string. If no precision is
given, the entire string is printed.

Chapter 4: Input and Output (`stdio.h') 149

all others

unde�ned.

� size

size is an optional modi�er that changes the data type that the corresponding argument
has. Behavior is unspeci�ed if a size is given that does not match the type.

hh With d, i, o, u, x, or X, speci�es that the argument should be converted
to a signed char or unsigned char before printing.

With n, speci�es that the argument is a pointer to a signed char.

h With d, i, o, u, x, or X, speci�es that the argument should be converted
to a short or unsigned short before printing.

With n, speci�es that the argument is a pointer to a short.

l With d, i, o, u, x, or X, speci�es that the argument is a long or unsigned
long.

With c, speci�es that the argument has type wint_t.

With s, speci�es that the argument is a pointer to wchar_t.

With n, speci�es that the argument is a pointer to a long.

With a, A, e, E, f, F, g, or G, has no e�ect (because of vararg promotion
rules, there is no need to distinguish between float and double).

ll With d, i, o, u, x, or X, speci�es that the argument is a long long or
unsigned long long.

With n, speci�es that the argument is a pointer to a long long.

j With d, i, o, u, x, or X, speci�es that the argument is an intmax_t or
uintmax_t.

With n, speci�es that the argument is a pointer to an intmax_t.

z With d, i, o, u, x, or X, speci�es that the argument is a ssize_t or size_t.

With n, speci�es that the argument is a pointer to a ssize_t.

t With d, i, o, u, x, or X, speci�es that the argument is a ptrdiff_t.

With n, speci�es that the argument is a pointer to a ptrdiff_t.

L With a, A, e, E, f, F, g, or G, speci�es that the argument is a long double.

� type

type speci�es what kind of conversion printf performs. Here is a table of these:

% Prints the percent character (%).

c Prints arg as single character. If the l size speci�er is in e�ect, a multibyte
character is printed.

C Short for %lc.

s Prints the elements of a pointer to char until the precision or a null charac-
ter is reached. If the l size speci�er is in e�ect, the pointer is to an array of
wchar_t, and the string is converted to multibyte characters before print-
ing.

150 Red Hat newlib C Library, Full

S Short for %ls.

d or i Prints a signed decimal integer; takes an int. Leading zeros are inserted
as necessary to reach the precision. A precision of 0 produces an empty
string.

D Newlib extension, short for %ld.

o Prints an unsigned octal integer; takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A precision of 0 produces an
empty string.

O Newlib extension, short for %lo.

u Prints an unsigned decimal integer; takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A precision of 0 produces an
empty string.

U Newlib extension, short for %lu.

x Prints an unsigned hexadecimal integer (using abcdef as digits beyond 9);
takes an unsigned. Leading zeros are inserted as necessary to reach the
precision. A precision of 0 produces an empty string.

X Like x, but uses ABCDEF as digits beyond 9.

f Prints a signed value of the form [-]9999.9999, with the precision deter-
mining how many digits follow the decimal point; takes a double (remem-
ber that float promotes to double as a vararg). The low order digit is
rounded to even. If the precision results in at most DECIMAL DIG digits,
the result is rounded correctly; if more than DECIMAL DIG digits are
printed, the result is only guaranteed to round back to the original value.

If the value is in�nite, the result is inf, and no zero padding is performed.
If the value is not a number, the result is nan, and no zero padding is
performed.

F Like f, but uses INF and NAN for non-�nite numbers.

e Prints a signed value of the form [-]9.9999e[+|-]999; takes a double.
The digit before the decimal point is non-zero if the value is non-zero.
The precision determines how many digits appear between . and e, and
the exponent always contains at least two digits. The value zero has an
exponent of zero. If the value is not �nite, it is printed like f.

E Like e, but using E to introduce the exponent, and like F for non-�nite
values.

g Prints a signed value in either f or e form, based on the given value and
precision|an exponent less than -4 or greater than the precision selects the
e form. Trailing zeros and the decimal point are printed only if necessary;
takes a double.

G Like g, except use F or E form.

Chapter 4: Input and Output (`stdio.h') 151

a Prints a signed value of the form [-]0x1.ffffp[+|-]9; takes a double.
The letters abcdef are used for digits beyond 9. The precision determines
how many digits appear after the decimal point. The exponent contains at
least one digit, and is a decimal value representing the power of 2; a value
of 0 has an exponent of 0. Non-�nite values are printed like f.

A Like a, except uses X, P, and ABCDEF instead of lower case.

n Takes a pointer to int, and stores a count of the number of bytes written
so far. No output is created.

p Takes a pointer to void, and prints it in an implementation-de�ned format.
This implementation is similar to %#tx), except that 0x appears even for
the NULL pointer.

_printf_r, _fprintf_r, _asprintf_r, _sprintf_r, _snprintf_r, _asnprintf_r are sim-
ply reentrant versions of the functions above.

Returns

On success, sprintf and asprintf return the number of bytes in the output string, except
the concluding NUL is not counted. snprintf returns the number of bytes that would be in
the output string, except the concluding NUL is not counted. printf and fprintf return the
number of characters transmitted. asnprintf returns the original str if there was enough
room, otherwise it returns an allocated string.

If an error occurs, the result of printf, fprintf, snprintf, and asprintf is a negative
value, and the result of asnprintf is NULL. No error returns occur for sprintf. For
printf and fprintf, errno may be set according to fputc. For asprintf and asnprintf,
errno may be set to ENOMEM if allocation fails, and for snprintf, errno may be set to
EOVERFLOW if size or the output length exceeds INT MAX.

Portability

ANSI C requires printf, fprintf, sprintf, and snprintf. asprintf and asnprintf are
newlib extensions.

The ANSI C standard speci�es that implementations must support at least formatted out-
put of up to 509 characters. This implementation has no inherent limit.

Depending on how newlib was con�gured, not all format speci�ers are supported.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

152 Red Hat newlib C Library, Full

4.53 sscanf, fscanf, scanf|scan and format input

Synopsis

#include <stdio.h>

int scanf(const char *format [, arg, ...]);

int fscanf(FILE *fd, const char *format [, arg, ...]);

int sscanf(const char *str, const char *format

[, arg, ...]);

int _scanf_r(struct _reent *ptr, const char *format

[, arg, ...]);

int _fscanf_r(struct _reent *ptr, FILE *fd, const char *format

[, arg, ...]);

int _sscanf_r(struct _reent *ptr, const char *str,

const char *format [, arg, ...]);

Description

scanf scans a series of input �elds from standard input, one character at a time. Each
�eld is interpreted according to a format speci�er passed to scanf in the format string at
*format . scanf stores the interpreted input from each �eld at the address passed to it as
the corresponding argument following format. You must supply the same number of format
speci�ers and address arguments as there are input �elds.

There must be su�cient address arguments for the given format speci�ers; if not the results
are unpredictable and likely disasterous. Excess address arguments are merely ignored.

scanf often produces unexpected results if the input diverges from an expected pattern.
Since the combination of gets or fgets followed by sscanf is safe and easy, that is the
preferred way to be certain that a program is synchronized with input at the end of a line.

fscanf and sscanf are identical to scanf, other than the source of input: fscanf reads
from a �le, and sscanf from a string.

The routines _scanf_r, _fscanf_r, and _sscanf_r are reentrant versions of scanf, fscanf,
and sscanf that take an additional �rst argument pointing to a reentrancy structure.

The string at *format is a character sequence composed of zero or more directives. Direc-
tives are composed of one or more whitespace characters, non-whitespace characters, and
format speci�cations.

Whitespace characters are blank (), tab (\t), or newline (\n). When scanf encounters
a whitespace character in the format string it will read (but not store) all consecutive
whitespace characters up to the next non-whitespace character in the input.

Non-whitespace characters are all other ASCII characters except the percent sign (%). When
scanf encounters a non-whitespace character in the format string it will read, but not store
a matching non-whitespace character.

Format speci�cations tell scanf to read and convert characters from the input �eld into
speci�c types of values, and store then in the locations speci�ed by the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format string.

The format speci�ers must begin with a percent sign (%) and have the following form:

Chapter 4: Input and Output (`stdio.h') 153

%[*][width][size]type

Each format speci�cation begins with the percent character (%). The other �elds are:

* an optional marker; if present, it suppresses interpretation and assignment of
this input �eld.

width an optional maximum �eld width: a decimal integer, which controls the maxi-
mum number of characters that will be read before converting the current input
�eld. If the input �eld has fewer than width characters, scanf reads all the
characters in the �eld, and then proceeds with the next �eld and its format
speci�cation.

If a whitespace or a non-convertable character occurs before width character
are read, the characters up to that character are read, converted, and stored.
Then scanf proceeds to the next format speci�cation.

size h, j, l, L, t, and z are optional size characters which override the default way
that scanf interprets the data type of the corresponding argument.

Modifier Type(s)
hh d, i, o, u, x, n convert input to char,

store in char object

h d, i, o, u, x, n convert input to short,
store in short object

h D, I, O, U, X no effect
e, f, c, s, p

j d, i, o, u, x, n convert input to intmax_t,
store in intmax_t object

j all others no effect

l d, i, o, u, x, n convert input to long,
store in long object

l e, f, g convert input to double
store in a double object

l D, I, O, U, X no effect
c, s, p

ll d, i, o, u, x, n convert to long long,
store in long long

L d, i, o, u, x, n convert to long long,
store in long long

L e, f, g, E, G convert to long double,
store in long double

L all others no effect

t d, i, o, u, x, n convert input to ptrdiff_t,
store in ptrdiff_t object

t all others no effect

154 Red Hat newlib C Library, Full

z d, i, o, u, x, n convert input to size_t,
store in size_t object

z all others no effect

type

A character to specify what kind of conversion scanf performs. Here is a table
of the conversion characters:

% No conversion is done; the percent character (%) is stored.

c Scans one character. Corresponding arg : (char *arg).

s Reads a character string into the array supplied. Corresponding
arg : (char arg[]).

[pattern]

Reads a non-empty character string into memory starting at arg.
This area must be large enough to accept the sequence and a termi-
nating null character which will be added automatically. (pattern
is discussed in the paragraph following this table). Corresponding
arg : (char *arg).

d Reads a decimal integer into the corresponding arg : (int *arg).

D Reads a decimal integer into the corresponding arg : (long *arg).

o Reads an octal integer into the corresponding arg : (int *arg).

O Reads an octal integer into the corresponding arg : (long *arg).

u Reads an unsigned decimal integer into the corresponding arg :
(unsigned int *arg).

U Reads an unsigned decimal integer into the corresponding arg :
(unsigned long *arg).

x,X Read a hexadecimal integer into the corresponding arg : (int

*arg).

e, f, g Read a oating-point number into the corresponding arg : (float
*arg).

E, F, G Read a oating-point number into the corresponding arg : (double
*arg).

i Reads a decimal, octal or hexadecimal integer into the correspond-
ing arg : (int *arg).

I Reads a decimal, octal or hexadecimal integer into the correspond-
ing arg : (long *arg).

n Stores the number of characters read in the corresponding arg :
(int *arg).

Chapter 4: Input and Output (`stdio.h') 155

p Stores a scanned pointer. ANSI C leaves the details to each imple-
mentation; this implementation treats %p exactly the same as %U.
Corresponding arg : (void **arg).

A pattern of characters surrounded by square brackets can be used instead of
the s type character. pattern is a set of characters which de�ne a search set of
possible characters making up the scanf input �eld. If the �rst character in the
brackets is a caret (^), the search set is inverted to include all ASCII characters
except those between the brackets. There is also a range facility which you can
use as a shortcut. %[0-9] matches all decimal digits. The hyphen must not be
the �rst or last character in the set. The character prior to the hyphen must
be lexically less than the character after it.

Here are some pattern examples:

%[abcd] matches strings containing only a, b, c, and d.

%[^abcd] matches strings containing any characters except a, b, c, or d

%[A-DW-Z]

matches strings containing A, B, C, D, W, X, Y, Z

%[z-a] matches the characters z, -, and a

Floating point numbers (for �eld types e, f, g, E, F, G) must correspond to the
following general form:

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

where objects inclosed in square brackets are optional, and ddd represents dec-
imal, octal, or hexadecimal digits.

Returns

scanf returns the number of input �elds successfully scanned, converted and stored; the
return value does not include scanned �elds which were not stored.

If scanf attempts to read at end-of-�le, the return value is EOF.

If no �elds were stored, the return value is 0.

scanf might stop scanning a particular �eld before reaching the normal �eld end character,
or may terminate entirely.

scanf stops scanning and storing the current �eld and moves to the next input �eld (if any)
in any of the following situations:

� The assignment suppressing character (*) appears after the % in the format speci�ca-
tion; the current input �eld is scanned but not stored.

� width characters have been read (width is a width speci�cation, a positive decimal
integer).

� The next character read cannot be converted under the the current format (for example,
if a Z is read when the format is decimal).

� The next character in the input �eld does not appear in the search set (or does appear
in the inverted search set).

156 Red Hat newlib C Library, Full

When scanf stops scanning the current input �eld for one of these reasons, the next char-
acter is considered unread and used as the �rst character of the following input �eld, or the
�rst character in a subsequent read operation on the input.

scanf will terminate under the following circumstances:

� The next character in the input �eld conicts with a corresponding non-whitespace
character in the format string.

� The next character in the input �eld is EOF.

� The format string has been exhausted.

When the format string contains a character sequence that is not part of a format spec-
i�cation, the same character sequence must appear in the input; scanf will scan but not
store the matched characters. If a conict occurs, the �rst conicting character remains in
the input as if it had never been read.

Portability

scanf is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 157

4.54 tmpfile|create a temporary �le

Synopsis

#include <stdio.h>

FILE *tmpfile(void);

FILE *_tmpfile_r(struct _reent *reent);

Description

Create a temporary �le (a �le which will be deleted automatically), using a name generated
by tmpnam. The temporary �le is opened with the mode "wb+", permitting you to read and
write anywhere in it as a binary �le (without any data transformations the host system
may perform for text �les).

The alternate function _tmpfile_r is a reentrant version. The argument reent is a pointer
to a reentrancy structure.

Returns

tmpfile normally returns a pointer to the temporary �le. If no temporary �le could be
created, the result is NULL, and errno records the reason for failure.

Portability

Both ANSI C and the System V Interface De�nition (Issue 2) require tmpfile.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read,
sbrk, write.

tmpfile also requires the global pointer environ.

158 Red Hat newlib C Library, Full

4.55 tmpnam, tempnam|name for a temporary �le

Synopsis

#include <stdio.h>

char *tmpnam(char *s);

char *tempnam(char *dir, char *pfx);

char *_tmpnam_r(struct _reent *reent, char *s);

char *_tempnam_r(struct _reent *reent, char *dir, char *pfx);

Description

Use either of these functions to generate a name for a temporary �le. The generated name
is guaranteed to avoid collision with other �les (for up to TMP_MAX calls of either function).

tmpnam generates �le names with the value of P_tmpdir (de�ned in `stdio.h') as the leading
directory component of the path.

You can use the tmpnam argument s to specify a suitable area of memory for the generated
�lename; otherwise, you can call tmpnam(NULL) to use an internal static bu�er.

tempnam allows you more control over the generated �lename: you can use the argument
dir to specify the path to a directory for temporary �les, and you can use the argument pfx
to specify a pre�x for the base �lename.

If dir is NULL, tempnam will attempt to use the value of environment variable TMPDIR instead;
if there is no such value, tempnam uses the value of P_tmpdir (de�ned in `stdio.h').

If you don't need any particular pre�x to the basename of temporary �les, you can pass
NULL as the pfx argument to tempnam.

_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and tempnam respectively. The
extra argument reent is a pointer to a reentrancy structure.

Warnings

The generated �lenames are suitable for temporary �les, but do not in themselves make
�les temporary. Files with these names must still be explicitly removed when you no longer
want them.

If you supply your own data area s for tmpnam, you must ensure that it has room for at
least L_tmpnam elements of type char.

Returns

Both tmpnam and tempnam return a pointer to the newly generated �lename.

Portability

ANSI C requires tmpnam, but does not specify the use of P_tmpdir. The System V Interface
De�nition (Issue 2) requires both tmpnam and tempnam.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read,
sbrk, write.

The global pointer environ is also required.

Chapter 4: Input and Output (`stdio.h') 159

4.56 ungetc|push data back into a stream

Synopsis

#include <stdio.h>

int ungetc(int c, FILE *stream);

int _ungetc_r(struct _reent *reent, int c, FILE *stream);

Description

ungetc is used to return bytes back to stream to be read again. If c is EOF, the stream
is unchanged. Otherwise, the unsigned char c is put back on the stream, and subsequent
reads will see the bytes pushed back in reverse order. Pushed byes are lost if the stream is
repositioned, such as by fseek, fsetpos, or rewind.

The underlying �le is not changed, but it is possible to push back something di�erent than
what was originally read. Ungetting a character will clear the end-of-stream marker, and
decrement the �le position indicator. Pushing back beyond the beginning of a �le gives
unspeci�ed behavior.

The alternate function _ungetc_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

The character pushed back, or EOF on error.

Portability

ANSI C requires ungetc, but only requires a pushback bu�er of one byte; although this
implementation can handle multiple bytes, not all can. Pushing back a signed char is a
common application bug.

Supporting OS subroutines required: sbrk.

160 Red Hat newlib C Library, Full

4.57 vfprintf, vprintf, vsprintf, vsnprintf, vasprintf,
vasnprintf|format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *fmt, va_list list);

int vfprintf(FILE *fp, const char *fmt, va_list list);

int vsprintf(char *str, const char *fmt, va_list list);

int vsnprintf(char *str, size_t size, const char *fmt,

va_list list);

int vasprintf(char **strp, const char *fmt, va_list list);

char *vasnprintf(char *str, size_t *size, const char *fmt,

va_list list);

int _vprintf_r(struct _reent *reent, const char *fmt,

va_list list);

int _vfprintf_r(struct _reent *reent, FILE *fp,

const char *fmt, va_list list);

int _vsprintf_r(struct _reent *reent, char *str,

const char *fmt, va_list list);

int _vasprintf_r(struct _reent *reent, char **str,

const char *fmt, va_list list);

int _vsnprintf_r(struct _reent *reent, char *str,

size_t size, const char *fmt,

va_list list);

char *_vasnprintf_r(struct _reent *reent, char *str,

size_t *size, const char *fmt,

va_list list);

Description

vprintf, vfprintf, vasprintf, vsprintf, vsnprintf, and vasnprintf are (respectively)
variants of printf, fprintf, asprintf, sprintf, snprintf, and asnprintf. They di�er
only in allowing their caller to pass the variable argument list as a va_list object (initialized
by va_start) rather than directly accepting a variable number of arguments. The caller is
responsible for calling va_end.

_vprintf_r, _vfprintf_r, _vasprintf_r, _vsprintf_r, _vsnprintf_r, and
_vasnprintf_r are reentrant versions of the above.

Returns

The return values are consistent with the corresponding functions.

Portability

ANSI C requires vprintf, vfprintf, vsprintf, and vsnprintf. The remaining functions
are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (`stdio.h') 161

162 Red Hat newlib C Library, Full

4.58 vfscanf, vscanf, vsscanf|format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vscanf(const char *fmt, va_list list);

int vfscanf(FILE *fp, const char *fmt, va_list list);

int vsscanf(const char *str, const char *fmt, va_list list);

int _vscanf_r(struct _reent *reent, const char *fmt,

va_list list);

int _vfscanf_r(struct _reent *reent, FILE *fp, const char *fmt,

va_list list);

int _vsscanf_r(struct _reent *reent, const char *str,

const char *fmt, va_list list);

Description

vscanf, vfscanf, and vsscanf are (respectively) variants of scanf, fscanf, and sscanf.
They di�er only in allowing their caller to pass the variable argument list as a va_list object
(initialized by va_start) rather than directly accepting a variable number of arguments.

Returns

The return values are consistent with the corresponding functions: vscanf returns the
number of input �elds successfully scanned, converted, and stored; the return value does
not include scanned �elds which were not stored.

If vscanf attempts to read at end-of-�le, the return value is EOF.

If no �elds were stored, the return value is 0.

The routines _vscanf_r, _vfscanf_f, and _vsscanf_r are reentrant versions which take
an additional �rst parameter which points to the reentrancy structure.

Portability

These are GNU extensions.

Supporting OS subroutines required:

Chapter 4: Input and Output (`stdio.h') 163

4.59 viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf,
vasniprintf|format argument list (integer only)

Synopsis

#include <stdio.h>

#include <stdarg.h>

int viprintf(const char *fmt, va_list list);

int vfiprintf(FILE *fp, const char *fmt, va_list list);

int vsiprintf(char *str, const char *fmt, va_list list);

int vsniprintf(char *str, size_t size, const char *fmt,

va_list list);

int vasiprintf(char **strp, const char *fmt, va_list list);

char *vasniprintf(char *str, size_t *size, const char *fmt,

va_list list);

int _viprintf_r(struct _reent *reent, const char *fmt,

va_list list);

int _vfiprintf_r(struct _reent *reent, FILE *fp,

const char *fmt, va_list list);

int _vsiprintf_r(struct _reent *reent, char *str,

const char *fmt, va_list list);

int _vsniprintf_r(struct _reent *reent, char *str,

size_t size, const char *fmt,

va_list list);

int _vasiprintf_r(struct _reent *reent, char **str,

const char *fmt, va_list list);

char *_vasniprintf_r(struct _reent *reent, char *str,

size_t *size, const char *fmt,

va_list list);

Description

viprintf, vfiprintf, vasiprintf, vsiprintf, vsniprintf, and vasniprintf are (respec-
tively) variants of iprintf, fiprintf, asiprintf, siprintf, sniprintf, and asniprintf.
They di�er only in allowing their caller to pass the variable argument list as a va_list object
(initialized by va_start) rather than directly accepting a variable number of arguments.
The caller is responsible for calling va_end.

_viprintf_r, _vfiprintf_r, _vasiprintf_r, _vsiprintf_r, _vsniprintf_r, and
_vasniprintf_r are reentrant versions of the above.

Returns

The return values are consistent with the corresponding functions:

Portability

All of these functions are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

164 Red Hat newlib C Library, Full

4.60 viscanf, vfiscanf, vsiscanf|format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int viscanf(const char *fmt, va_list list);

int vfiscanf(FILE *fp, const char *fmt, va_list list);

int vsiscanf(const char *str, const char *fmt, va_list list);

int _viscanf_r(struct _reent *reent, const char *fmt,

va_list list);

int _vfiscanf_r(struct _reent *reent, FILE *fp, const char *fmt,

va_list list);

int _vsiscanf_r(struct _reent *reent, const char *str,

const char *fmt, va_list list);

Description

viscanf, vfiscanf, and vsiscanf are (respectively) variants of iscanf, fiscanf, and
siscanf. They di�er only in allowing their caller to pass the variable argument list as a
va_list object (initialized by va_start) rather than directly accepting a variable number
of arguments.

Returns

The return values are consistent with the corresponding functions: viscanf returns the
number of input �elds successfully scanned, converted, and stored; the return value does
not include scanned �elds which were not stored.

If viscanf attempts to read at end-of-�le, the return value is EOF.

If no �elds were stored, the return value is 0.

The routines _viscanf_r, _vfiscanf_f, and _vsiscanf_r are reentrant versions which
take an additional �rst parameter which points to the reentrancy structure.

Portability

These are newlib extensions.

Supporting OS subroutines required:

Chapter 5: Strings and Memory (`string.h') 165

5 Strings and Memory (`string.h')

This chapter describes string-handling functions and functions for managing areas of mem-
ory. The corresponding declarations are in `string.h'.

166 Red Hat newlib C Library, Full

5.1 bcmp|compare two memory areas

Synopsis

#include <string.h>

int bcmp(const void *s1, const void *s2, size_t n);

Description

This function compares not more than n bytes of the object pointed to by s1 with the object
pointed to by s2.

This function is identical to memcmp.

Returns

The function returns an integer greater than, equal to or less than zero according to whether
the object pointed to by s1 is greater than, equal to or less than the object pointed to by
s2.

Portability

bcmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 167

5.2 bcopy|copy memory regions

Synopsis

#include <string.h>

void bcopy(const void *in, void *out, size_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.

This function is implemented in term of memmove.

Portability

bcopy requires no supporting OS subroutines.

168 Red Hat newlib C Library, Full

5.3 bzero|initialize memory to zero

Synopsis

#include <string.h>

void bzero(void *b, size_t length);

Description

bzero initializes length bytes of memory, starting at address b, to zero.

Returns

bzero does not return a result.

Portability

bzero is in the Berkeley Software Distribution. Neither ANSI C nor the System V Interface
De�nition (Issue 2) require bzero.

bzero requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 169

5.4 index|search for character in string

Synopsis

#include <string.h>

char * index(const char *string, int c);

Description

This function �nds the �rst occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).

This function is identical to strchr.

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

index requires no supporting OS subroutines.

170 Red Hat newlib C Library, Full

5.5 memccpy|copy memory regions with end-token check

Synopsis

#include <string.h>

void* memccpy(void *out, const void *in,

int endchar, size_t n);

Description

This function copies up to n bytes from the memory region pointed to by in to the memory
region pointed to by out. If a byte matching the endchar is encountered, the byte is copied
and copying stops.

If the regions overlap, the behavior is unde�ned.

Returns

memccpy returns a pointer to the �rst byte following the endchar in the out region. If no
byte matching endchar was copied, then NULL is returned.

Portability

memccpy is a GNU extension.

memccpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 171

5.6 memchr|�nd character in memory

Synopsis

#include <string.h>

void *memchr(const void *src, int c, size_t length);

Description

This function searches memory starting at *src for the character c. The search only
ends with the �rst occurrence of c, or after length characters; in particular, NULL does not
terminate the search.

Returns

If the character c is found within length characters of *src , a pointer to the character is
returned. If c is not found, then NULL is returned.

Portability

memchr is ANSI C.

memchr requires no supporting OS subroutines.

172 Red Hat newlib C Library, Full

5.7 memcmp|compare two memory areas

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

This function compares not more than n characters of the object pointed to by s1 with the
object pointed to by s2.

Returns

The function returns an integer greater than, equal to or less than zero according to whether
the object pointed to by s1 is greater than, equal to or less than the object pointed to by
s2.

Portability

memcmp is ANSI C.

memcmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 173

5.8 memcpy|copy memory regions

Synopsis

#include <string.h>

void* memcpy(void *out, const void *in, size_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.

If the regions overlap, the behavior is unde�ned.

Returns

memcpy returns a pointer to the �rst byte of the out region.

Portability

memcpy is ANSI C.

memcpy requires no supporting OS subroutines.

174 Red Hat newlib C Library, Full

5.9 memmem|�nd memory segment

Synopsis

#include <string.h>

char *memmem(const void *s1, size_t l1, const void *s2,

size_t l2);

Description

Locates the �rst occurrence in the memory region pointed to by s1 with length l1 of the
sequence of bytes pointed to by s2 of length l2. If you already know the lengths of your
haystack and needle, memmem can be much faster than strstr.

Returns

Returns a pointer to the located segment, or a null pointer if s2 is not found. If l2 is 0, s1
is returned.

Portability

memmem is a newlib extension.

memmem requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 175

5.10 memmove|move possibly overlapping memory

Synopsis

#include <string.h>

void *memmove(void *dst, const void *src, size_t length);

Description

This function moves length characters from the block of memory starting at *src to the
memory starting at *dst . memmove reproduces the characters correctly at *dst even if the
two areas overlap.

Returns

The function returns dst as passed.

Portability

memmove is ANSI C.

memmove requires no supporting OS subroutines.

176 Red Hat newlib C Library, Full

5.11 mempcpy|copy memory regions and return end pointer

Synopsis

#include <string.h>

void* mempcpy(void *out, const void *in, size_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.

If the regions overlap, the behavior is unde�ned.

Returns

mempcpy returns a pointer to the byte following the last byte copied to the out region.

Portability

mempcpy is a GNU extension.

mempcpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 177

5.12 memset|set an area of memory

Synopsis

#include <string.h>

void *memset(const void *dst, int c, size_t length);

Description

This function converts the argument c into an unsigned char and �lls the �rst length char-
acters of the array pointed to by dst to the value.

Returns

memset returns the value of m.

Portability

memset is ANSI C.

memset requires no supporting OS subroutines.

178 Red Hat newlib C Library, Full

5.13 rindex|reverse search for character in string

Synopsis

#include <string.h>

char * rindex(const char *string, int c);

Description

This function �nds the last occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).

This function is identical to strrchr.

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

rindex requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 179

5.14 stpcpy|copy string returning a pointer to its end

Synopsis

#include <string.h>

char *stpcpy(char *dst, const char *src);

Description

stpcpy copies the string pointed to by src (including the terminating null character) to the
array pointed to by dst.

Returns

This function returns a pointer to the end of the destination string, thus pointing to the
trailing '\0'.

Portability

stpcpy is a GNU extension, candidate for inclusion into POSIX/SUSv4.

stpcpy requires no supporting OS subroutines.

180 Red Hat newlib C Library, Full

5.15 stpncpy|counted copy string returning a pointer to its
end

Synopsis

#include <string.h>

char *stpncpy(char *dst, const char *src, size_t length);

Description

stpncpy copies not more than length characters from the the string pointed to by src

(including the terminating null character) to the array pointed to by dst. If the string
pointed to by src is shorter than length characters, null characters are appended to the
destination array until a total of length characters have been written.

Returns

This function returns a pointer to the end of the destination string, thus pointing to the
trailing '\0', or, if the destination string is not null-terminated, pointing to dst + n.

Portability

stpncpy is a GNU extension, candidate for inclusion into POSIX/SUSv4.

stpncpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 181

5.16 strcasecmp|case-insensitive character string compare

Synopsis

#include <string.h>

int strcasecmp(const char *a, const char *b);

Description

strcasecmp compares the string at a to the string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to uppercase), strcasecmp
returns a number greater than zero. If the two strings match, strcasecmp returns zero. If
*a sorts lexicographically before *b , strcasecmp returns a number less than zero.

Portability

strcasecmp is in the Berkeley Software Distribution.

strcasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this
library.

182 Red Hat newlib C Library, Full

5.17 strcasestr|case-insensitive character string search

Synopsis

#include <string.h>

char *strcasestr(const char *s, const char *find);

Description

strcasestr searchs the string s for the �rst occurrence of the sequence �nd. strcasestr
is identical to strstr except the search is case-insensitive.

Returns

A pointer to the �rst case-insensitive occurrence of the sequence �nd or NULL if no match
was found.

Portability

strcasestr is in the Berkeley Software Distribution.

strcasestr requires no supporting OS subroutines. It uses tolower() from elsewhere in this
library.

Chapter 5: Strings and Memory (`string.h') 183

5.18 strcat|concatenate strings

Synopsis

#include <string.h>

char *strcat(char *dst, const char *src);

Description

strcat appends a copy of the string pointed to by src (including the terminating null
character) to the end of the string pointed to by dst. The initial character of src overwrites
the null character at the end of dst.

Returns

This function returns the initial value of dst

Portability

strcat is ANSI C.

strcat requires no supporting OS subroutines.

184 Red Hat newlib C Library, Full

5.19 strchr|search for character in string

Synopsis

#include <string.h>

char * strchr(const char *string, int c);

Description

This function �nds the �rst occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

strchr is ANSI C.

strchr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 185

5.20 strcmp|character string compare

Synopsis

#include <string.h>

int strcmp(const char *a, const char *b);

Description

strcmp compares the string at a to the string at b.

Returns

If *a sorts lexicographically after *b , strcmp returns a number greater than zero. If the
two strings match, strcmp returns zero. If *a sorts lexicographically before *b , strcmp
returns a number less than zero.

Portability

strcmp is ANSI C.

strcmp requires no supporting OS subroutines.

186 Red Hat newlib C Library, Full

5.21 strcoll|locale-speci�c character string compare

Synopsis

#include <string.h>

int strcoll(const char *stra, const char * strb);

Description

strcoll compares the string pointed to by stra to the string pointed to by strb, using an
interpretation appropriate to the current LC_COLLATE state.

Returns

If the �rst string is greater than the second string, strcoll returns a number greater than
zero. If the two strings are equivalent, strcoll returns zero. If the �rst string is less than
the second string, strcoll returns a number less than zero.

Portability

strcoll is ANSI C.

strcoll requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 187

5.22 strcpy|copy string

Synopsis

#include <string.h>

char *strcpy(char *dst, const char *src);

Description

strcpy copies the string pointed to by src (including the terminating null character) to the
array pointed to by dst.

Returns

This function returns the initial value of dst.

Portability

strcpy is ANSI C.

strcpy requires no supporting OS subroutines.

188 Red Hat newlib C Library, Full

5.23 strcspn|count characters not in string

Synopsis

size_t strcspn(const char *s1, const char *s2);

Description

This function computes the length of the initial part of the string pointed to by s1 which
consists entirely of characters NOT from the string pointed to by s2 (excluding the termi-
nating null character).

Returns

strcspn returns the length of the substring found.

Portability

strcspn is ANSI C.

strcspn requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 189

5.24 strerror|convert error number to string

Synopsis

#include <string.h>

char *strerror(int errnum);

Description

strerror converts the error number errnum into a string. The value of errnum is usually a
copy of errno. If errnum is not a known error number, the result points to an empty string.

This implementation of strerror prints out the following strings for each of the values
de�ned in `errno.h':

E2BIG Arg list too long

EACCES Permission denied

EADDRINUSE

Address already in use

EADV Advertise error

EAFNOSUPPORT

Address family not supported by protocol family

EAGAIN No more processes

EALREADY Socket already connected

EBADF Bad �le number

EBADMSG Bad message

EBUSY Device or resource busy

ECHILD No children

ECOMM Communication error

ECONNABORTED

Software caused connection abort

ECONNREFUSED

Connection refused

EDEADLK Deadlock

EDESTADDRREQ

Destination address required

EEXIST File exists

EDOM Math argument

EFAULT Bad address

EFBIG File too large

EHOSTDOWN

Host is down

190 Red Hat newlib C Library, Full

EHOSTUNREACH

Host is unreachable

EIDRM Identi�er removed

EINPROGRESS

Connection already in progress

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISCONN Socket is already connected

EISDIR Is a directory

ELIBACC Cannot access a needed shared library

ELIBBAD Accessing a corrupted shared library

ELIBEXEC Cannot exec a shared library directly

ELIBMAX Attempting to link in more shared libraries than system limit

ELIBSCN .lib section in a.out corrupted

EMFILE Too many open �les

EMLINK Too many links

EMSGSIZE Message too long

EMULTIHOP

Multihop attempted

ENAMETOOLONG

File or path name too long

ENETDOWN Network interface not con�gured

ENETUNREACH

Network is unreachable

ENFILE Too many open �les in system

ENODEV No such device

ENOENT No such �le or directory

ENOEXEC Exec format error

ENOLCK No lock

ENOLINK Virtual circuit is gone

ENOMEM Not enough space

ENOMSG No message of desired type

ENONET Machine is not on the network

Chapter 5: Strings and Memory (`string.h') 191

ENOPKG No package

ENOPROTOOPT

Protocol not available

ENOSPC No space left on device

ENOSR No stream resources

ENOSTR Not a stream

ENOSYS Function not implemented

ENOTBLK Block device required

ENOTCONN Socket is not connected

ENOTDIR Not a directory

ENOTEMPTY

Directory not empty

ENOTSOCK Socket operation on non-socket

ENOTSUP Not supported

ENOTTY Not a character device

ENXIO No such device or address

EPERM Not owner

EPIPE Broken pipe

EPROTO Protocol error

EPROTOTYPE

Protocol wrong type for socket

EPROTONOSUPPORT

Unknown protocol

ERANGE Result too large

EREMOTE Resource is remote

EROFS Read-only �le system

ESHUTDOWN

Can't send after socket shutdown

ESOCKTNOSUPPORT

Socket type not supported

ESPIPE Illegal seek

ESRCH No such process

ESRMNT Srmount error

ETIME Stream ioctl timeout

192 Red Hat newlib C Library, Full

ETIMEDOUT

Connection timed out

ETXTBSY Text �le busy

EXDEV Cross-device link

Returns

This function returns a pointer to a string. Your application must not modify that string.

Portability

ANSI C requires strerror, but does not specify the strings used for each error number.

Although this implementation of strerror is reentrant, ANSI C declares that subsequent
calls to strerror may overwrite the result string; therefore portable code cannot depend
on the reentrancy of this subroutine.

This implementation of strerror provides for user-de�ned extensibility. errno.h de�nes
ELASTERROR, which can be used as a base for user-de�ned error values. If the user

supplies a routine named _user_strerror, and errnum passed to strerror does not match
any of the supported values, _user_strerror is called with errnum as its argument.

_user_strerror takes one argument of type int, and returns a character pointer. If er-
rnum is unknown to _user_strerror, _user_strerror returns NULL. The default _user_
strerror returns NULL for all input values.

strerror requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 193

5.25 strerror_r|convert error number to string and copy
to bu�er

Synopsis

#include <string.h>

char *strerror_r(int errnum, char *buffer, size_t n);

Description

strerror_r converts the error number errnum into a string and copies the result into the
supplied bu�er for a length up to n, including the NUL terminator. The value of errnum
is usually a copy of errno. If errnum is not a known error number, the result is the empty
string.

See strerror for how strings are mapped to errnum.

Returns

This function returns a pointer to a string. Your application must not modify that string.

Portability

strerror_r is a GNU extension.

strerror_r requires no supporting OS subroutines.

194 Red Hat newlib C Library, Full

5.26 strlen|character string length

Synopsis

#include <string.h>

size_t strlen(const char *str);

Description

The strlen function works out the length of the string starting at *str by counting charar-
acters until it reaches a NULL character.

Returns

strlen returns the character count.

Portability

strlen is ANSI C.

strlen requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 195

5.27 strlwr|force string to lowercase

Synopsis

#include <string.h>

char *strlwr(char *a);

Description

strlwr converts each character in the string at a to lowercase.

Returns

strlwr returns its argument, a.

Portability

strlwr is not widely portable.

strlwr requires no supporting OS subroutines.

196 Red Hat newlib C Library, Full

5.28 strncasecmp|case-insensitive character string compare

Synopsis

#include <string.h>

int strncasecmp(const char *a, const char * b, size_t length);

Description

strncasecmp compares up to length characters from the string at a to the string at b in a
case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to uppercase), strncasecmp
returns a number greater than zero. If the two strings are equivalent, strncasecmp returns
zero. If *a sorts lexicographically before *b , strncasecmp returns a number less than zero.

Portability

strncasecmp is in the Berkeley Software Distribution.

strncasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in
this library.

Chapter 5: Strings and Memory (`string.h') 197

5.29 strncat|concatenate strings

Synopsis

#include <string.h>

char *strncat(char *dst, const char *src, size_t length);

Description

strncat appends not more than length characters from the string pointed to by src (in-
cluding the terminating null character) to the end of the string pointed to by dst. The
initial character of src overwrites the null character at the end of dst. A terminating null
character is always appended to the result

Warnings

Note that a null is always appended, so that if the copy is limited by the length argument,
the number of characters appended to dst is n + 1.

Returns

This function returns the initial value of dst

Portability

strncat is ANSI C.

strncat requires no supporting OS subroutines.

198 Red Hat newlib C Library, Full

5.30 strncmp|character string compare

Synopsis

#include <string.h>

int strncmp(const char *a, const char * b, size_t length);

Description

strncmp compares up to length characters from the string at a to the string at b.

Returns

If *a sorts lexicographically after *b , strncmp returns a number greater than zero. If the
two strings are equivalent, strncmp returns zero. If *a sorts lexicographically before *b ,
strncmp returns a number less than zero.

Portability

strncmp is ANSI C.

strncmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 199

5.31 strncpy|counted copy string

Synopsis

#include <string.h>

char *strncpy(char *dst, const char *src, size_t length);

Description

strncpy copies not more than length characters from the the string pointed to by src

(including the terminating null character) to the array pointed to by dst. If the string
pointed to by src is shorter than length characters, null characters are appended to the
destination array until a total of length characters have been written.

Returns

This function returns the initial value of dst.

Portability

strncpy is ANSI C.

strncpy requires no supporting OS subroutines.

200 Red Hat newlib C Library, Full

5.32 strnlen|character string length

Synopsis

#include <string.h>

size_t strnlen(const char *str, size_t n);

Description

The strnlen function works out the length of the string starting at *str by counting
chararacters until it reaches a NUL character or the maximum: n number of characters
have been inspected.

Returns

strnlen returns the character count or n.

Portability

strnlen is a GNU extension.

strnlen requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 201

5.33 strpbrk|�nd characters in string

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

This function locates the �rst occurence in the string pointed to by s1 of any character in
string pointed to by s2 (excluding the terminating null character).

Returns

strpbrk returns a pointer to the character found in s1, or a null pointer if no character
from s2 occurs in s1.

Portability

strpbrk requires no supporting OS subroutines.

202 Red Hat newlib C Library, Full

5.34 strrchr|reverse search for character in string

Synopsis

#include <string.h>

char * strrchr(const char *string, int c);

Description

This function �nds the last occurence of c (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

strrchr is ANSI C.

strrchr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 203

5.35 strspn|�nd initial match

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

This function computes the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2 (excluding the terminating
null character).

Returns

strspn returns the length of the segment found.

Portability

strspn is ANSI C.

strspn requires no supporting OS subroutines.

204 Red Hat newlib C Library, Full

5.36 strstr|�nd string segment

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

Locates the �rst occurrence in the string pointed to by s1 of the sequence of characters in
the string pointed to by s2 (excluding the terminating null character).

Returns

Returns a pointer to the located string segment, or a null pointer if the string s2 is not
found. If s2 points to a string with zero length, s1 is returned.

Portability

strstr is ANSI C.

strstr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 205

5.37 strtok, strtok_r, strsep|get next token from a string

Synopsis

#include <string.h>

char *strtok(char *source, const char *delimiters)

char *strtok_r(char *source, const char *delimiters,

char **lasts)

char *strsep(char **source_ptr, const char *delimiters)

Description

The strtok function is used to isolate sequential tokens in a null-terminated string,
*source . These tokens are delimited in the string by at least one of the characters
in *delimiters . The �rst time that strtok is called, *source should be speci�ed;
subsequent calls, wishing to obtain further tokens from the same string, should pass a null
pointer instead. The separator string, *delimiters , must be supplied each time and may
change between calls.

The strtok function returns a pointer to the beginning of each subsequent token in the
string, after replacing the separator character itself with a null character. When no more
tokens remain, a null pointer is returned.

The strtok_r function has the same behavior as strtok, except a pointer to placeholder
*lasts must be supplied by the caller.

The strsep function is similar in behavior to strtok, except a pointer to the string pointer
must be supplied source_ptr and the function does not skip leading delimiters. When the
string starts with a delimiter, the delimiter is changed to the null character and the empty
string is returned. Like strtok_r and strtok, the *source_ptr is updated to the next
character following the last delimiter found or NULL if the end of string is reached with no
more delimiters.

Returns

strtok, strtok_r, and strsep all return a pointer to the next token, or NULL if no more
tokens can be found. For strsep, a token may be the empty string.

Portability

strtok is ANSI C. strtok_r is POSIX. strsep is a BSD extension.

strtok, strtok_r, and strsep require no supporting OS subroutines.

206 Red Hat newlib C Library, Full

5.38 strupr|force string to uppercase

Synopsis

#include <string.h>

char *strupr(char *a);

Description

strupr converts each character in the string at a to uppercase.

Returns

strupr returns its argument, a.

Portability

strupr is not widely portable.

strupr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (`string.h') 207

5.39 strxfrm|transform string

Synopsis

#include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

Description

This function transforms the string pointed to by s2 and places the resulting string into the
array pointed to by s1. The transformation is such that if the strcmp function is applied
to the two transformed strings, it returns a value greater than, equal to, or less than zero,
correspoinding to the result of a strcoll function applied to the same two original strings.

No more than n characters are placed into the resulting array pointed to by s1, including
the terminating null character. If n is zero, s1 may be a null pointer. If copying takes place
between objects that overlap, the behavior is unde�ned.

With a C locale, this function just copies.

Returns

The strxfrm function returns the length of the transformed string (not including the termi-
nating null character). If the value returned is n or more, the contents of the array pointed
to by s1 are indeterminate.

Portability

strxfrm is ANSI C.

strxfrm requires no supporting OS subroutines.

208 Red Hat newlib C Library, Full

5.40 swab|swap adjacent bytes

Synopsis

#include <unistd.h>

void swab(const void *in, void *out, ssize_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out, exchanging adjacent even and odd bytes.

Portability

swab requires no supporting OS subroutines.

Chapter 6: Wide Character Strings (`wchar.h') 209

6 Wide Character Strings (`wchar.h')

This chapter describes wide-character string-handling functions and managing areas of
memory containing wide characters. The corresponding declarations are in `wchar.h'.

210 Red Hat newlib C Library, Full

6.1 wmemchr|�nd a wide character in memory

Synopsis

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

Description

The wmemchr function locates the �rst occurrence of c in the initial n wide characters of the
object pointed to be s. This function is not a�ected by locale and all wchar t values are
treated identically. The null wide character and wchar t values not corresponding to valid
characters are not treated specially.

If n is zero, s must be a valid pointer and the function behaves as if no valid occurrence of
c is found.

Returns

The wmemchr function returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

Portability

wmemchr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 211

6.2 wmemcmp|compare wide characters in memory

Synopsis

#include <wchar.h>

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wmemcmp function compares the �rst n wide characters of the object pointed to by s1

to the �rst n wide characters of the object pointed to by s2. This function is not a�ected by
locale and all wchar t values are treated identically. The null wide character and wchar t
values not corresponding to valid characters are not treated specially.

If n is zero, s1 and s2 must be a valid pointers and the function behaves as if the two objects
compare equal.

Returns

The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the object pointed to by s1 is greater than, equal to, or less than the object pointed to
by s2.

Portability

wmemcmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

212 Red Hat newlib C Library, Full

6.3 wmemcpy|copy wide characters in memory

Synopsis

#include <wchar.h>

wchar_t *wmemcpy(wchar_t *d, const wchar_t *s, size_t n);

Description

The wmemcpy function copies n wide characters from the object pointed to by s to the
object pointed to be d. This function is not a�ected by locale and all wchar t values are
treated identically. The null wide character and wchar t values not corresponding to valid
characters are not treated specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns

The wmemcpy function returns the value of d.

Portability

wmemcpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 213

6.4 wmemmove|copy wide characters in memory with
overlapping areas

Synopsis

#include <wchar.h>

wchar_t *wmemmove(wchar_t *d, const wchar_t *s, size_t n);

Description

The wmemmove function copies n wide characters from the object pointed to by s to the
object pointed to by d. Copying takes place as if the n wide characters from the object
pointed to by s are �rst copied into a temporary array of n wide characters that does not
overlap the objects pointed to by d or s, and then the n wide characters from the temporary
array are copied into the object pointed to by d.

This function is not a�ected by locale and all wchar t values are treated identically. The
null wide character and wchar t values not corresponding to valid characters are not treated
specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns

The wmemmove function returns the value of d.

Portability

wmemmove is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

214 Red Hat newlib C Library, Full

6.5 wmemset|set wide characters in memory

Synopsis

#include <wchar.h>

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Description

The wmemset function copies the value of c into each of the �rst n wide characters of the
object pointed to by s. This function is not a�ected by locale and all wchar t values are
treated identically. The null wide character and wchar t values not corresponding to valid
characters are not treated specially.

If n is zero, s must be a valid pointer and the function copies zero wide characters.

Returns

The wmemset function returns the value of s.

Portability

wmemset is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 215

6.6 wcscat|concatenate two wide-character strings

Synopsis

#include <wchar.h>

wchar_t *wcscat(wchar_t *s1, const wchar_t *s2);

Description

The wcscat function appends a copy of the wide-character string pointed to by s2 (including
the terminating null wide-character code) to the end of the wide-character string pointed to
by s1. The initial wide-character code of s2 overwrites the null wide-character code at the
end of s1. If copying takes place between objects that overlap, the behaviour is unde�ned.

Returns

The wcscat function returns s1; no return value is reserved to indicate an error.

Portability

wcscat is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

216 Red Hat newlib C Library, Full

6.7 wcschr|wide-character string scanning operation

Synopsis

#include <wchar.h>

wchar_t *wcschr(const wchar_t *s, wchar_t c);

Description

The wcschr function locates the �rst occurrence of c in the wide-character string pointed
to by s. The value of c must be a character representable as a type wchar t and must
be a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character string.

Returns

Upon completion, wcschr returns a pointer to the wide-character code, or a null pointer if
the wide-character code is not found.

Portability

wcschr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 217

6.8 wcscmp|compare two wide-character strings

Synopsis

#include <wchar.h>

int wcscmp(const wchar_t *s1, *s2);

Description

The wcscmp function compares the wide-character string pointed to by s1 to the wide-
character string pointed to by s2.

The sign of a non-zero return value is determined by the sign of the di�erence between the
values of the �rst pair of wide-character codes that di�er in the objects being compared.

Returns

Upon completion, wcscmp returns an integer greater than, equal to or less than 0, if the wide-
character string pointed to by s1 is greater than, equal to or less than the wide-character
string pointed to by s2 respectively.

Portability

wcscmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

218 Red Hat newlib C Library, Full

6.9 wcscoll|locale-speci�c wide-character string compare

Synopsis

#include <wchar.h>

int wcscoll(const wchar_t *stra, const wchar_t * strb);

Description

wcscoll compares the wide-character string pointed to by stra to the wide-character string
pointed to by strb, using an interpretation appropriate to the current LC_COLLATE state.

The current implementation of wcscoll simply uses wcscmp and does not support any
language-speci�c sorting.

Returns

If the �rst string is greater than the second string, wcscoll returns a number greater than
zero. If the two strings are equivalent, wcscoll returns zero. If the �rst string is less than
the second string, wcscoll returns a number less than zero.

Portability

wcscoll is ISO/IEC 9899/AMD1:1995 (ISO C).

Chapter 6: Wide Character Strings (`wchar.h') 219

6.10 wcscpy|copy a wide-character string

Synopsis

#include <wchar.h>

wchar_t *wcscpy(wchar_t *s1, const wchar_t *,s2);

Description

The wcscpy function copies the wide-character string pointed to by s2 (including the ter-
minating null wide-character code) into the array pointed to by s1. If copying takes place
between objects that overlap, the behaviour is unde�ned.

Returns

The wcscpy function returns s1; no return value is reserved to indicate an error.

Portability

wcscpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

220 Red Hat newlib C Library, Full

6.11 wcpcpy|copy a wide-character string returning a
pointer to its end

Synopsis

#include <wchar.h>

wchar_t *wcpcpy(wchar_t *s1, const wchar_t *,s2);

Description

The wcpcpy function copies the wide-character string pointed to by s2 (including the ter-
minating null wide-character code) into the array pointed to by s1. If copying takes place
between objects that overlap, the behaviour is unde�ned.

Returns

This function returns a pointer to the end of the destination string, thus pointing to the
trailing '\0'.

Portability

wcpcpy is a GNU extension.

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 221

6.12 wcscspn|get length of a complementary wide substring

Synopsis

#include <wchar.h>

size_t wcscspn(const wchar_t *s, wchar_t *set);

Description

The wcscspn function computes the length of the maximum initial segment of the wide-
character string pointed to by s which consists entirely of wide-character codes not from
the wide-character string pointed to by set.

Returns

The wcscspn function returns the length of the initial substring of s1; no return value is
reserved to indicate an error.

Portability

wcscspn is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

222 Red Hat newlib C Library, Full

6.13 wcslcat|concatenate wide-character strings to
speci�ed length

Synopsis

#include <wchar.h>

size_t wcslcat(wchar_t *dst, const wchar_t *src, size_t siz);

Description

The wcslcat function appends wide characters from src to end of the dst wide-character
string so that the resultant wide-character string is not more than siz wide characters
including the terminating null wide-character code. A terminating null wide character is
always added unless siz is 0. Thus, the maximum number of wide characters that can
be appended from src is siz - 1. If copying takes place between objects that overlap, the
behaviour is unde�ned.

Returns

Wide-character string length of initial dst plus the wide-character string length of src (does
not include terminating null wide-characters). If the return value is greater than or equal
to siz, then truncation occurred and not all wide characters from src were appended.

Portability

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 223

6.14 wcslcpy|copy a wide-character string to speci�ed
length

Synopsis

#include <wchar.h>

size_t wcslcpy(wchar_t *dst, const wchar_t *src, size_t siz);

Description

wcslcpy copies wide characters from src to dst such that up to siz - 1 characters are copied.
A terminating null is appended to the result, unless siz is zero.

Returns

wcslcpy returns the number of wide characters in src, not including the terminating null
wide character. If the return value is greater than or equal to siz, then not all wide characters
were copied from src and truncation occurred.

Portability

No supporting OS subroutines are required.

224 Red Hat newlib C Library, Full

6.15 wcslen|get wide-character string length

Synopsis

#include <wchar.h>

size_t wcslen(const wchar_t *s);

Description

The wcslen function computes the number of wide-character codes in the wide-character
string to which s points, not including the terminating null wide-character code.

Returns

The wcslen function returns the length of s; no return value is reserved to indicate an error.

Portability

wcslen is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 225

6.16 wcsncat|concatenate part of two wide-character
strings

Synopsis

#include <wchar.h>

wchar_t *wcsncat(wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wcsncat function appends not more than n wide-character codes (a null wide-character
code and wide-character codes that follow it are not appended) from the array pointed to
by s2 to the end of the wide-character string pointed to by s1. The initial wide-character
code of s2 overwrites the null wide-character code at the end of s1. A terminating null wide-
character code is always appended to the result. If copying takes place between objects that
overlap, the behaviour is unde�ned.

Returns

The wcsncat function returns s1; no return value is reserved to indicate an error.

Portability

wcsncat is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

226 Red Hat newlib C Library, Full

6.17 wcsncmp|compare part of two wide-character strings

Synopsis

#include <wchar.h>

int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wcsncmp function compares not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not compared) from the array pointed to by s1

to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the di�erence between the
values of the �rst pair of wide-character codes that di�er in the objects being compared.

Returns

Upon successful completion, wcsncmp returns an integer greater than, equal to or less than
0, if the possibly null-terminated array pointed to by s1 is greater than, equal to or less
than the possibly null-terminated array pointed to by s2 respectively.

Portability

wcsncmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 227

6.18 wcsncpy|copy part of a wide-character string

Synopsis

#include <wchar.h>

wchar_t *wcsncpy(wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wcsncpy function copies not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not copied) from the array pointed to by s2 to the
array pointed to by s1. If copying takes place between objects that overlap, the behaviour
is unde�ned.

If the array pointed to by s2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes are appended to the copy in the array pointed to by s1,
until n wide-character codes in all are written.

Returns

The wcsncpy function returns s1; no return value is reserved to indicate an error.

Portability

wcsncpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

228 Red Hat newlib C Library, Full

6.19 wcpncpy|copy part of a wide-character string returning
a pointer to its end

Synopsis

#include <wchar.h>

wchar_t *wcpncpy(wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wcpncpy function copies not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not copied) from the array pointed to by s2 to the
array pointed to by s1. If copying takes place between objects that overlap, the behaviour
is unde�ned.

If the array pointed to by s2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes are appended to the copy in the array pointed to by s1,
until n wide-character codes in all are written.

Returns

The wcpncpy function returns s1; no return value is reserved to indicate an error.

Portability

wcpncpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 229

6.20 wcsnlen|get �xed-size wide-character string length

Synopsis

#include <wchar.h>

size_t wcsnlen(const wchar_t *s, size_t maxlen);

Description

The wcsnlen function computes the number of wide-character codes in the wide-character
string pointed to by s not including the terminating L'\0' wide character but at mostmaxlen

wide characters.

Returns

wcsnlen returns the length of s if it is less then maxlen, or maxlen if there is no L'\0' wide
character in �rst maxlen characters.

Portability

wcsnlen is a GNU extension.

wcsnlen requires no supporting OS subroutines.

230 Red Hat newlib C Library, Full

6.21 wcspbrk|-scan wide-character string for a wide-
character code

Synopsis

#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *s, const wchar_t *set);

Description

The wcspbrk function locates the �rst occurrence in the wide-character string pointed to
by s of any wide-character code from the wide-character string pointed to by set.

Returns

Upon successful completion, wcspbrk returns a pointer to the wide-character code or a null
pointer if no wide-character code from set occurs in s.

Portability

wcspbrk is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 231

6.22 wcsrchr|wide-character string scanning operation

Synopsis

#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

Description

The wcsrchr function locates the last occurrence of c in the wide-character string pointed
to by s. The value of c must be a character representable as a type wchar t and must
be a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code is considered to be part of the wide-character string.

Returns

Upon successful completion, wcsrchr returns a pointer to the wide-character code or a null
pointer if c does not occur in the wide-character string.

Portability

wcsrchr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

232 Red Hat newlib C Library, Full

6.23 wcsspn|get length of a wide substring

Synopsis

#include <wchar.h>

size_t wcsspn(const wchar_t *s, const wchar_t *set);

Description

The wcsspn function computes the length of the maximum initial segment of the wide-
character string pointed to by s which consists entirely of wide-character codes from the
wide-character string pointed to by set.

Returns

The wcsspn() function returns the length s1; no return value is reserved to indicate an error.

Portability

wcsspn is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (`wchar.h') 233

6.24 wcsstr|�nd a wide-character substring

Synopsis

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *big, const wchar_t *little);

Description

The wcsstr function locates the �rst occurrence in the wide-character string pointed to by
big of the sequence of wide characters (excluding the terminating null wide character) in
the wide-character string pointed to by little.

Returns

On successful completion, wcsstr returns a pointer to the located wide-character string, or
a null pointer if the wide-character string is not found.

If little points to a wide-character string with zero length, the function returns big.

Portability

wcsstr is ISO/IEC 9899/AMD1:1995 (ISO C).

234 Red Hat newlib C Library, Full

6.25 wcswidth|number of column positions of a wide-
character string

Synopsis

#include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

Description

The wcswidth function shall determine the number of column positions required for n

wide-character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

Returns

The wcswidth function either shall return 0 (if pwcs points to a null wide-character code), or
return the number of column positions to be occupied by the wide-character string pointed
to by pwcs, or return -1 (if any of the �rst n wide-character codes in the wide-character
string pointed to by pwcs is not a printable wide-character code).

Portability

wcswidth has been introduced in the Single UNIX Speci�cation Volume 2. wcswidth has
been marked as an extension in the Single UNIX Speci�cation Volume 3.

Chapter 6: Wide Character Strings (`wchar.h') 235

6.26 wcsxfrm|locale-speci�c wide-character string
transformation

Synopsis

#include <wchar.h>

int wcsxfrm(wchar_t *stra, const wchar_t * strb, size_t n);

Description

wcsxfrm transforms the wide-character string pointed to by strb to the wide-character string
pointed to by stra, Comparing two transformed wide strings with wcscmp should return the
same result as comparing the original strings with wcscoll. No more than n wide characters
are transformed, including the trailing null character.

If n is 0, stra may be a NULL pointer.

The current implementation of wcsxfrm simply uses wcslcpy and does not support any
language-speci�c transformations.

Returns

wcsxfrm returns the length of the transformed wide character string. if the return value is
greater or equal to n, the content of stra is unde�ned.

Portability

wcsxfrm is ISO/IEC 9899/AMD1:1995 (ISO C).

236 Red Hat newlib C Library, Full

6.27 wcwidth|number of column positions of a wide-
character code

Synopsis

#include <wchar.h>

int wcwidth(const wchar_t wc);

Description

The wcwidth function shall determine the number of column positions required for the wide
character wc. The application shall ensure that the value of wc is a character representable
as a wchar t, and is a wide-character code corresponding to a valid character in the current
locale.

Returns

The wcwidth function shall either return 0 (if wc is a null wide-character code), or return
the number of column positions to be occupied by the wide-character code wc, or return -1
(if wc does not correspond to a printable wide-character code).

The current implementation of wcwidth simply sets the width of all printable characters to
1 since newlib has no character tables around.

Portability

wcwidth has been introduced in the Single UNIX Speci�cation Volume 2. wcwidth has been
marked as an extension in the Single UNIX Speci�cation Volume 3.

Chapter 7: Signal Handling (`signal.h') 237

7 Signal Handling (`signal.h')

A signal is an event that interrupts the normal ow of control in your program. Your
operating environment normally de�nes the full set of signals available (see `sys/signal.h'),
as well as the default means of dealing with them|typically, either printing an error message
and aborting your program, or ignoring the signal.

All systems support at least the following signals:

SIGABRT Abnormal termination of a program; raised by the <<abort>> function.

SIGFPE A domain error in arithmetic, such as overow, or division by zero.

SIGILL Attempt to execute as a function data that is not executable.

SIGINT Interrupt; an interactive attention signal.

SIGSEGV An attempt to access a memory location that is not available.

SIGTERM A request that your program end execution.

Two functions are available for dealing with asynchronous signals|one to allow your pro-
gram to send signals to itself (this is called raising a signal), and one to specify subroutines
(called handlers to handle particular signals that you anticipate may occur|whether raised
by your own program or the operating environment.

To support these functions, `signal.h' de�nes three macros:

SIG_DFL Used with the signal function in place of a pointer to a handler subroutine, to
select the operating environment's default handling of a signal.

SIG_IGN Used with the signal function in place of a pointer to a handler, to ignore a
particular signal.

SIG_ERR Returned by the signal function in place of a pointer to a handler, to indicate
that your request to set up a handler could not be honored for some reason.

`signal.h' also de�nes an integral type, sig_atomic_t. This type is not used in any
function declarations; it exists only to allow your signal handlers to declare a static storage
location where they may store a signal value. (Static storage is not otherwise reliable from
signal handlers.)

238 Red Hat newlib C Library, Full

7.1 raise|send a signal

Synopsis

#include <signal.h>

int raise(int sig);

int _raise_r(void *reent, int sig);

Description

Send the signal sig (one of the macros from `sys/signal.h'). This interrupts your program's
normal ow of execution, and allows a signal handler (if you've de�ned one, using signal)
to take control.

The alternate function _raise_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

The result is 0 if sig was successfully raised, 1 otherwise. However, the return value (since
it depends on the normal ow of execution) may not be visible, unless the signal handler
for sig terminates with a return or unless SIG_IGN is in e�ect for this signal.

Portability

ANSI C requires raise, but allows the full set of signal numbers to vary from one imple-
mentation to another.

Required OS subroutines: getpid, kill.

Chapter 7: Signal Handling (`signal.h') 239

7.2 signal|specify handler subroutine for a signal

Synopsis

#include <signal.h>

void (*signal(int sig, void(*func)(int))) (int);

void (*_signal_r(void *reent, int sig, void(*func)(int))) (int);

Description

signal provides a simple signal-handling implementation for embedded targets.

signal allows you to request changed treatment for a particular signal sig. You can use one
of the prede�ned macros SIG_DFL (select system default handling) or SIG_IGN (ignore this
signal) as the value of func; otherwise, func is a function pointer that identi�es a subroutine
in your program as the handler for this signal.

Some of the execution environment for signal handlers is unpredictable; notably, the only
library function required to work correctly from within a signal handler is signal itself,
and only when used to rede�ne the handler for the current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if you declare
a static storage location as `volatile sig_atomic_t', then you may use that location in a
signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your program's execution
continues at the point where it was when the signal was raised (whether by your program
itself, or by an external event). Signal handlers can also use functions such as exit and
abort to avoid returning.

The alternate function _signal_r is the reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

If your request for a signal handler cannot be honored, the result is SIG_ERR; a speci�c error
number is also recorded in errno.

Otherwise, the result is the previous handler (a function pointer or one of the prede�ned
macros).

Portability

ANSI C requires signal.

No supporting OS subroutines are required to link with signal, but it will not have any
useful e�ects, except for software generated signals, without an operating system that can
actually raise exceptions.

240 Red Hat newlib C Library, Full

Chapter 8: Time Functions (`time.h') 241

8 Time Functions (`time.h')

This chapter groups functions used either for reporting on time (elapsed, current, or compute
time) or to perform calculations based on time.

The header �le `time.h' de�nes three types. clock_t and time_t are both used for repre-
sentations of time particularly suitable for arithmetic. (In this implementation, quantities
of type clock_t have the highest resolution possible on your machine, and quantities of type
time_t resolve to seconds.) size_t is also de�ned if necessary for quantities representing
sizes.

`time.h' also de�nes the structure tm for the traditional representation of Gregorian calen-
dar time as a series of numbers, with the following �elds:

tm_sec Seconds, between 0 and 60 inclusive (60 allows for leap seconds).

tm_min Minutes, between 0 and 59 inclusive.

tm_hour Hours, between 0 and 23 inclusive.

tm_mday Day of the month, between 1 and 31 inclusive.

tm_mon Month, between 0 (January) and 11 (December).

tm_year Year (since 1900), can be negative for earlier years.

tm_wday Day of week, between 0 (Sunday) and 6 (Saturday).

tm_yday Number of days elapsed since last January 1, between 0 and 365 inclusive.

tm_isdst Daylight Savings Time ag: positive means DST in e�ect, zero means DST not
in e�ect, negative means no information about DST is available.

242 Red Hat newlib C Library, Full

8.1 asctime|format time as string

Synopsis

#include <time.h>

char *asctime(const struct tm *clock);

char *asctime_r(const struct tm *clock, char *buf);

Description
Format the time value at clock into a string of the form

Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static bu�er; each call to asctime overwrites the string generated
by previous calls.

Returns

A pointer to the string containing a formatted timestamp.

Portability

ANSI C requires asctime.

asctime requires no supporting OS subroutines.

Chapter 8: Time Functions (`time.h') 243

8.2 clock|cumulative processor time

Synopsis

#include <time.h>

clock_t clock(void);

Description

Calculates the best available approximation of the cumulative amount of time used by your
program since it started. To convert the result into seconds, divide by the macro CLOCKS_

PER_SEC.

Returns

The amount of processor time used so far by your program, in units de�ned by the machine-
dependent macro CLOCKS_PER_SEC. If no measurement is available, the result is (clock t)-1.

Portability

ANSI C requires clock and CLOCKS_PER_SEC.

Supporting OS subroutine required: times.

244 Red Hat newlib C Library, Full

8.3 ctime|convert time to local and format as string

Synopsis

#include <time.h>

char *ctime(const time_t *clock);

char *ctime_r(const time_t *clock, char *buf);

Description
Convert the time value at clock to local time (like localtime) and format it into a string
of the form

Wed Jun 15 11:38:07 1988\n\0

(like asctime).

Returns

A pointer to the string containing a formatted timestamp.

Portability

ANSI C requires ctime.

ctime requires no supporting OS subroutines.

Chapter 8: Time Functions (`time.h') 245

8.4 difftime|subtract two times

Synopsis

#include <time.h>

double difftime(time_t tim1, time_t tim2);

Description

Subtracts the two times in the arguments: `tim1 - tim2 '.

Returns

The di�erence (in seconds) between tim2 and tim1, as a double.

Portability

ANSI C requires difftime, and de�nes its result to be in seconds in all implementations.

difftime requires no supporting OS subroutines.

246 Red Hat newlib C Library, Full

8.5 gmtime|convert time to UTC traditional form

Synopsis

#include <time.h>

struct tm *gmtime(const time_t *clock);

struct tm *gmtime_r(const time_t *clock, struct tm *res);

Description

gmtime takes the time at clock representing the number of elapsed seconds since 00:00:00
on January 1, 1970, Universal Coordinated Time (UTC, also known in some countries as
GMT, Greenwich Mean time) and converts it to a struct tm representation.

gmtime constructs the traditional time representation in static storage; each call to gmtime

or localtime will overwrite the information generated by previous calls to either function.

Returns

A pointer to the traditional time representation (struct tm).

Portability

ANSI C requires gmtime.

gmtime requires no supporting OS subroutines.

Chapter 8: Time Functions (`time.h') 247

8.6 localtime|convert time to local representation

Synopsis

#include <time.h>

struct tm *localtime(time_t *clock);

struct tm *localtime_r(time_t *clock, struct tm *res);

Description

localtime converts the time at clock into local time, then converts its representation from
the arithmetic representation to the traditional representation de�ned by struct tm.

localtime constructs the traditional time representation in static storage; each call to
gmtime or localtime will overwrite the information generated by previous calls to either
function.

mktime is the inverse of localtime.

Returns

A pointer to the traditional time representation (struct tm).

Portability

ANSI C requires localtime.

localtime requires no supporting OS subroutines.

248 Red Hat newlib C Library, Full

8.7 mktime|convert time to arithmetic representation

Synopsis

#include <time.h>

time_t mktime(struct tm *timp);

Description

mktime assumes the time at timp is a local time, and converts its representation from the
traditional representation de�ned by struct tm into a representation suitable for arithmetic.

localtime is the inverse of mktime.

Returns

If the contents of the structure at timp do not form a valid calendar time representation,
the result is -1. Otherwise, the result is the time, converted to a time_t value.

Portability

ANSI C requires mktime.

mktime requires no supporting OS subroutines.

Chapter 8: Time Functions (`time.h') 249

8.8 strftime|exible calendar time formatter

Synopsis

#include <time.h>

size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timp);

Description

strftime converts a struct tm representation of the time (at timp) into a null-terminated
string, starting at s and occupying no more than maxsize characters.

You control the format of the output using the string at format. *format can contain
two kinds of speci�cations: text to be copied literally into the formatted string, and time
conversion speci�cations. Time conversion speci�cations are two- and three-character se-
quences beginning with `%' (use `%%' to include a percent sign in the output). Each de�ned
conversion speci�cation selects only the speci�ed �eld(s) of calendar time data from *timp ,
and converts it to a string in one of the following ways:

%a A three-letter abbreviation for the day of the week. [tm wday]

%A The full name for the day of the week, one of `Sunday', `Monday', `Tuesday',
`Wednesday', `Thursday', `Friday', or `Saturday'. [tm wday]

%b A three-letter abbreviation for the month name. [tm mon]

%B The full name of the month, one of `January', `February', `March', `April',
`May', `June', `July', `August', `September', `October', `November', `December'.
[tm mon]

%c A string representing the complete date and time, in the form `"%a %b %e

%H:%M:%S %Y"' (example "Mon Apr 01 13:13:13 1992"). [tm sec, tm min,
tm hour, tm mday, tm mon, tm year, tm wday]

%C The century, that is, the year divided by 100 then truncated. For 4-digit years,
the result is zero-padded and exactly two characters; but for other years, there
may a negative sign or more digits. In this way, `%C%y' is equivalent to `%Y'.
[tm year]

%d The day of the month, formatted with two digits (from `01' to `31'). [tm mday]

%D A string representing the date, in the form `"%m/%d/%y"'. [tm mday, tm mon,
tm year]

%e The day of the month, formatted with leading space if single digit (from `1' to
`31'). [tm mday]

%Ex In some locales, the E modi�er selects alternative representations of certain
modi�ers x. But in the "C" locale supported by newlib, it is ignored, and
treated as %x.

%F A string representing the ISO 8601:2000 date format, in the form `"%Y-%m-%d"'.
[tm mday, tm mon, tm year]

%g The last two digits of the week-based year, see speci�er %G (from `00' to `99').
[tm year, tm wday, tm yday]

250 Red Hat newlib C Library, Full

%G The week-based year. In the ISO 8601:2000 calendar, week 1 of the year includes
January 4th, and begin on Mondays. Therefore, if January 1st, 2nd, or 3rd falls
on a Sunday, that day and earlier belong to the last week of the previous year;
and if December 29th, 30th, or 31st falls on Monday, that day and later belong
to week 1 of the next year. For consistency with %Y, it always has at least four
characters. Example: "%G" for Saturday 2nd January 1999 gives "1998", and
for Tuesday 30th December 1997 gives "1998". [tm year, tm wday, tm yday]

%h A three-letter abbreviation for the month name (synonym for "%b"). [tm mon]

%H The hour (on a 24-hour clock), formatted with two digits (from `00' to `23').
[tm hour]

%I The hour (on a 12-hour clock), formatted with two digits (from `01' to `12').
[tm hour]

%j The count of days in the year, formatted with three digits (from `001' to `366').
[tm yday]

%k The hour (on a 24-hour clock), formatted with leading space if single digit (from
`0' to `23'). Non-POSIX extension. [tm hour]

%l The hour (on a 12-hour clock), formatted with leading space if single digit (from
`1' to `12'). Non-POSIX extension. [tm hour]

%m The month number, formatted with two digits (from `01' to `12'). [tm mon]

%M The minute, formatted with two digits (from `00' to `59'). [tm min]

%n A newline character (`\n').

%Ox In some locales, the O modi�er selects alternative digit characters for certain
modi�ers x. But in the "C" locale supported by newlib, it is ignored, and
treated as %x.

%p Either `AM' or `PM' as appropriate. [tm hour]

%r The 12-hour time, to the second. Equivalent to "%I:%M:%S %p". [tm sec,
tm min, tm hour]

%R The 24-hour time, to the minute. Equivalent to "%H:%M". [tm min, tm hour]

%S The second, formatted with two digits (from `00' to `60'). The value 60 accounts
for the occasional leap second. [tm sec]

%t A tab character (`\t').

%T The 24-hour time, to the second. Equivalent to "%H:%M:%S". [tm sec,
tm min, tm hour]

%u The weekday as a number, 1-based from Monday (from `1' to `7'). [tm wday]

%U The week number, where weeks start on Sunday, week 1 contains the �rst
Sunday in a year, and earlier days are in week 0. Formatted with two digits
(from `00' to `53'). See also %W. [tm wday, tm yday]

%V The week number, where weeks start on Monday, week 1 contains January 4th,
and earlier days are in the previous year. Formatted with two digits (from `01'
to `53'). See also %G. [tm year, tm wday, tm yday]

Chapter 8: Time Functions (`time.h') 251

%w The weekday as a number, 0-based from Sunday (from `0' to `6'). [tm wday]

%W The week number, where weeks start on Monday, week 1 contains the �rst
Monday in a year, and earlier days are in week 0. Formatted with two digits
(from `00' to `53'). [tm wday, tm yday]

%x A string representing the complete date, equivalent to "%m/%d/%y".
[tm mon, tm mday, tm year]

%X A string representing the full time of day (hours, minutes, and seconds), equiv-
alent to "%H:%M:%S". [tm sec, tm min, tm hour]

%y The last two digits of the year (from `00' to `99'). [tm year]

%Y The full year, equivalent to %C%y. It will always have at least four characters,
but may have more. The year is accurate even when tm year added to the
o�set of 1900 overows an int. [tm year]

%z The o�set from UTC. The format consists of a sign (negative is west of
Greewich), two characters for hour, then two characters for minutes (-hhmm
or +hhmm). If tm isdst is negative, the o�set is unknown and no output is
generated; if it is zero, the o�set is the standard o�set for the current time
zone; and if it is positive, the o�set is the daylight savings o�set for the current
timezone. The o�set is determined from the TZ environment variable, as if by
calling tzset(). [tm isdst]

%Z The time zone name. If tm isdst is negative, no output is generated. Otherwise,
the time zone name is based on the TZ environment variable, as if by calling
tzset(). [tm isdst]

%% A single character, `%'.

Returns

When the formatted time takes up no more than maxsize characters, the result is the length
of the formatted string. Otherwise, if the formatting operation was abandoned due to lack
of room, the result is 0, and the string starting at s corresponds to just those parts of
*format that could be completely �lled in within the maxsize limit.

Portability

ANSI C requires strftime, but does not specify the contents of *s when the formatted
string would require more than maxsize characters. Unrecognized speci�ers and �elds of
timp that are out of range cause unde�ned results. Since some formats expand to 0 bytes,
it is wise to set *s to a nonzero value beforehand to distinguish between failure and an
empty string. This implementation does not support s being NULL, nor overlapping s and
format.

strftime requires no supporting OS subroutines.

252 Red Hat newlib C Library, Full

8.9 time|get current calendar time (as single number)

Synopsis

#include <time.h>

time_t time(time_t *t);

Description

time looks up the best available representation of the current time and returns it, encoded
as a time_t. It stores the same value at t unless the argument is NULL.

Returns

A -1 result means the current time is not available; otherwise the result represents the
current time.

Portability

ANSI C requires time.

Supporting OS subroutine required: Some implementations require gettimeofday.

Chapter 8: Time Functions (`time.h') 253

8.10 __tz_lock, __tz_unlock|lock time zone global variables

Synopsis

#include "local.h"

void __tz_lock (void);

void __tz_unlock (void);

Description

The tzset facility functions call these functions when they need to ensure the values of
global variables. The version of these routines supplied in the library use the lock API
de�ned in sys/lock.h. If multiple threads of execution can call the time functions and give
up scheduling in the middle, then you you need to de�ne your own versions of these functions
in order to safely lock the time zone variables during a call. If you do not, the results of
localtime, mktime, ctime, and strftime are unde�ned.

The lock __tz_lock may not be called recursively; that is, a call __tz_lock will always
lock all subsequent __tz_lock calls until the corresponding __tz_unlock call on the same
thread is made.

254 Red Hat newlib C Library, Full

8.11 tzset|set timezone characteristics from TZ
environment variable

Synopsis

#include <time.h>

void tzset(void);

void _tzset_r (struct _reent *);

Description

tzset examines the TZ environment variable and sets up the three external variables: _

timezone, _daylight, and tzname. The value of _timezone shall be the o�set from the
current time zone to GMT. The value of _daylight shall be 0 if there is no daylight savings
time for the current time zone, otherwise it will be non-zero. The tzname array has two
entries: the �rst is the name of the standard time zone, the second is the name of the
daylight-savings time zone.

The TZ environment variable is expected to be in the following POSIX format:

stdo�set1[dst[o�set2][,start[/time1],end[/time2]]]

where: std is the name of the standard time-zone (minimum 3 chars) o�set1 is the value to
add to local time to arrive at Universal time it has the form: hh[:mm[:ss]] dst is the name of
the alternate (daylight-savings) time-zone (min 3 chars) o�set2 is the value to add to local
time to arrive at Universal time it has the same format as the std o�set start is the day
that the alternate time-zone starts time1 is the optional time that the alternate time-zone
starts (this is in local time and defaults to 02:00:00 if not speci�ed) end is the day that the
alternate time-zone ends time2 is the time that the alternate time-zone ends (it is in local
time and defaults to 02:00:00 if not speci�ed)

Note that there is no white-space padding between �elds. Also note that if TZ is null, the
default is Universal GMT which has no daylight-savings time. If TZ is empty, the default
EST5EDT is used.

The function _tzset_r is identical to tzset only it is reentrant and is used for applications
that use multiple threads.

Returns

There is no return value.

Portability

tzset is part of the POSIX standard.

Supporting OS subroutine required: None

Chapter 9: Locale (`locale.h') 255

9 Locale (`locale.h')

A locale is the name for a collection of parameters (a�ecting collating sequences and format-
ting conventions) that may be di�erent depending on location or culture. The "C" locale is
the only one de�ned in the ANSI C standard.

This is a minimal implementation, supporting only the required "C" value for locale; strings
representing other locales are not honored. ("" is also accepted; it represents the default
locale for an implementation, here equivalent to "C".

`locale.h' de�nes the structure lconv to collect the information on a locale, with the
following �elds:

char *decimal_point

The decimal point character used to format \ordinary" numbers (all numbers
except those referring to amounts of money). "." in the C locale.

char *thousands_sep

The character (if any) used to separate groups of digits, when formatting ordi-
nary numbers. "" in the C locale.

char *grouping

Speci�cations for how many digits to group (if any grouping is done at all)
when formatting ordinary numbers. The numeric value of each character in
the string represents the number of digits for the next group, and a value of
0 (that is, the string's trailing NULL) means to continue grouping digits using
the last value speci�ed. Use CHAR_MAX to indicate that no further grouping is
desired. "" in the C locale.

char *int_curr_symbol

The international currency symbol (�rst three characters), if any, and the char-
acter used to separate it from numbers. "" in the C locale.

char *currency_symbol

The local currency symbol, if any. "" in the C locale.

char *mon_decimal_point

The symbol used to delimit fractions in amounts of money. "" in the C locale.

char *mon_thousands_sep

Similar to thousands_sep, but used for amounts of money. "" in the C locale.

char *mon_grouping

Similar to grouping, but used for amounts of money. "" in the C locale.

char *positive_sign

A string to ag positive amounts of money when formatting. "" in the C locale.

char *negative_sign

A string to ag negative amounts of money when formatting. "" in the C locale.

char int_frac_digits

The number of digits to display when formatting amounts of money to inter-
national conventions. CHAR_MAX (the largest number representable as a char)
in the C locale.

256 Red Hat newlib C Library, Full

char frac_digits

The number of digits to display when formatting amounts of money to local
conventions. CHAR_MAX in the C locale.

char p_cs_precedes

1 indicates the local currency symbol is used before a positive or zero formatted
amount of money; 0 indicates the currency symbol is placed after the formatted
number. CHAR_MAX in the C locale.

char p_sep_by_space

1 indicates the local currency symbol must be separated from positive or zero

numbers by a space; 0 indicates that it is immediately adjacent to numbers.
CHAR_MAX in the C locale.

char n_cs_precedes

1 indicates the local currency symbol is used before a negative formatted amount
of money; 0 indicates the currency symbol is placed after the formatted number.
CHAR_MAX in the C locale.

char n_sep_by_space

1 indicates the local currency symbol must be separated from negative numbers
by a space; 0 indicates that it is immediately adjacent to numbers. CHAR_MAX

in the C locale.

char p_sign_posn

Controls the position of the positive sign for numbers representing money. 0

means parentheses surround the number; 1 means the sign is placed before both
the number and the currency symbol; 2 means the sign is placed after both the
number and the currency symbol; 3 means the sign is placed just before the
currency symbol; and 4 means the sign is placed just after the currency symbol.
CHAR_MAX in the C locale.

char n_sign_posn

Controls the position of the negative sign for numbers representing money, using
the same rules as p_sign_posn. CHAR_MAX in the C locale.

Chapter 9: Locale (`locale.h') 257

9.1 setlocale, localeconv|select or query locale

Synopsis

#include <locale.h>

char *setlocale(int category, const char *locale);

lconv *localeconv(void);

char *_setlocale_r(void *reent,

int category, const char *locale);

lconv *_localeconv_r(void *reent);

Description

setlocale is the facility de�ned by ANSI C to condition the execution environment for
international collating and formatting information; localeconv reports on the settings of
the current locale.

This is a minimal implementation, supporting only the required "C" value for locale; strings
representing other locales are not honored unless MB CAPABLE is de�ned in which case
three new extensions are allowed for LC CTYPE or LC MESSAGES only: "C-JIS", "C-
EUCJP", "C-SJIS", or "C-ISO-8859-1". ("" is also accepted; it represents the default locale
for an implementation, here equivalent to "C".)

If you use NULL as the locale argument, setlocale returns a pointer to the string repre-
senting the current locale (always "C" in this implementation). The acceptable values for
category are de�ned in `locale.h' as macros beginning with "LC_", but this implementation
does not check the values you pass in the category argument.

localeconv returns a pointer to a structure (also de�ned in `locale.h') describing the
locale-speci�c conventions currently in e�ect.

_localeconv_r and _setlocale_r are reentrant versions of localeconv and setlocale

respectively. The extra argument reent is a pointer to a reentrancy structure.

Returns

setlocale returns either a pointer to a string naming the locale currently in e�ect (always
"C" for this implementation, or, if the locale request cannot be honored, NULL.

localeconv returns a pointer to a structure of type lconv, which describes the formatting
and collating conventions in e�ect (in this implementation, always those of the C locale).

Portability

ANSI C requires setlocale, but the only locale required across all implementations is the
C locale.

No supporting OS subroutines are required.

258 Red Hat newlib C Library, Full

Chapter 10: Reentrancy 259

10 Reentrancy

Reentrancy is a characteristic of library functions which allows multiple processes to use
the same address space with assurance that the values stored in those spaces will remain
constant between calls. The Red Hat newlib implementation of the library functions ensures
that whenever possible, these library functions are reentrant. However, there are some
functions that can not be trivially made reentrant. Hooks have been provided to allow you
to use these functions in a fully reentrant fashion.

These hooks use the structure _reent de�ned in `reent.h'. A variable de�ned as `struct
_reent' is called a reentrancy structure. All functions which must manipulate global in-
formation are available in two versions. The �rst version has the usual name, and uses a
single global instance of the reentrancy structure. The second has a di�erent name, nor-
mally formed by prepending `_' and appending `_r', and takes a pointer to the particular
reentrancy structure to use.

For example, the function fopen takes two arguments, �le and mode, and uses the global
reentrancy structure. The function _fopen_r takes the arguments, struct reent, which is a
pointer to an instance of the reentrancy structure, �le and mode.

There are two versions of `struct _reent', a normal one and one for small memory
systems, controlled by the _REENT_SMALL de�nition from the (automatically included)
`<sys/config.h>'.

Each function which uses the global reentrancy structure uses the global variable _impure_
ptr, which points to a reentrancy structure.

This means that you have two ways to achieve reentrancy. Both require that each thread
of execution control initialize a unique global variable of type `struct _reent':

1. Use the reentrant versions of the library functions, after initializing a global reentrancy
structure for each process. Use the pointer to this structure as the extra argument for
all library functions.

2. Ensure that each thread of execution control has a pointer to its own unique reentrancy
structure in the global variable _impure_ptr, and call the standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.

Equivalent for errno variable:

_errno_r

Locale functions:

_localeconv_r _setlocale_r

Equivalents for stdio variables:

_stdin_r _stdout_r _stderr_r

260 Red Hat newlib C Library, Full

Stdio functions:

_fdopen_r _perror_r _tempnam_r

_fopen_r _putchar_r _tmpnam_r

_getchar_r _puts_r _tmpfile_r

_gets_r _remove_r _vfprintf_r

_iprintf_r _rename_r _vsnprintf_r

_mkstemp_r _snprintf_r _vsprintf_r

_mktemp_t _sprintf_r

Signal functions:

_init_signal_r _signal_r

_kill_r __sigtramp_r

_raise_r

Stdlib functions:

_calloc_r _mblen_r _setenv_r

_dtoa_r _mbstowcs_r _srand_r

_free_r _mbtowc_r _strtod_r

_getenv_r _memalign_r _strtol_r

_mallinfo_r _mstats_r _strtoul_r

_malloc_r _putenv_r _system_r

_malloc_r _rand_r _wcstombs_r

_malloc_stats_r _realloc_r _wctomb_r

String functions:

_strdup_r _strtok_r

System functions:

_close_r _link_r _unlink_r

_execve_r _lseek_r _wait_r

_fcntl_r _open_r _write_r

_fork_r _read_r

_fstat_r _sbrk_r

_gettimeofday_r _stat_r

_getpid_r _times_r

Time function:

_asctime_r

Chapter 11: Miscellaneous Macros and Functions 261

11 Miscellaneous Macros and Functions

This chapter describes miscellaneous routines not covered elsewhere.

262 Red Hat newlib C Library, Full

11.1 ffs|�nd �rst bit set in a word

Synopsis

int ffs(int word);

Description

ffs returns the �rst bit set in a word.

Returns

ffs returns 0 if c is 0, 1 if c is odd, 2 if c is a multiple of 2, etc.

Portability

ffs is not ANSI C.

No supporting OS subroutines are required.

Chapter 11: Miscellaneous Macros and Functions 263

11.2 unctrl|get printable representation of a character

Synopsis

#include <unctrl.h>

char *unctrl(int c);

int unctrllen(int c);

Description

unctrl is a macro which returns the printable representation of c as a string. unctrllen

is a macro which returns the length of the printable representation of c.

Returns

unctrl returns a string of the printable representation of c.

unctrllen returns the length of the string which is the printable representation of c.

Portability

unctrl and unctrllen are not ANSI C.

No supporting OS subroutines are required.

264 Red Hat newlib C Library, Full

Chapter 12: System Calls 265

12 System Calls

The C subroutine library depends on a handful of subroutine calls for operating system
services. If you use the C library on a system that complies with the POSIX.1 standard
(also known as IEEE 1003.1), most of these subroutines are supplied with your operating
system.

If some of these subroutines are not provided with your system|in the extreme case, if
you are developing software for a \bare board" system, without an OS|you will at least
need to provide do-nothing stubs (or subroutines with minimal functionality) to allow your
programs to link with the subroutines in libc.a.

12.1 De�nitions for OS interface

This is the complete set of system de�nitions (primarily subroutines) required; the examples
shown implement the minimal functionality required to allow libc to link, and fail gracefully
where OS services are not available.

Graceful failure is permitted by returning an error code. A minor complication arises
here: the C library must be compatible with development environments that supply fully
functional versions of these subroutines. Such environments usually return error codes in a
global errno. However, the Red Hat newlib C library provides a macro de�nition for errno
in the header �le `errno.h', as part of its support for reentrant routines (see Chapter 10
[Reentrancy], page 259).

The bridge between these two interpretations of errno is straightforward: the C library
routines with OS interface calls capture the errno values returned globally, and record
them in the appropriate �eld of the reentrancy structure (so that you can query them using
the errno macro from `errno.h').

This mechanism becomes visible when you write stub routines for OS interfaces. You must
include `errno.h', then disable the macro, like this:

#include <errno.h>

#undef errno

extern int errno;

The examples in this chapter include this treatment of errno.

_exit Exit a program without cleaning up �les. If your system doesn't provide this,
it is best to avoid linking with subroutines that require it (exit, system).

close Close a �le. Minimal implementation:

int close(int file) {

return -1;

}

environ A pointer to a list of environment variables and their values. For a minimal
environment, this empty list is adequate:

char *__env[1] = { 0 };

char **environ = __env;

execve Transfer control to a new process. Minimal implementation (for a system with-
out processes):

266 Red Hat newlib C Library, Full

#include <errno.h>

#undef errno

extern int errno;

int execve(char *name, char **argv, char **env) {

errno = ENOMEM;

return -1;

}

fork Create a new process. Minimal implementation (for a system without pro-
cesses):

#include <errno.h>

#undef errno

extern int errno;

int fork(void) {

errno = EAGAIN;

return -1;

}

fstat Status of an open �le. For consistency with other minimal implementations
in these examples, all �les are regarded as character special devices. The
`sys/stat.h' header �le required is distributed in the `include' subdirectory
for this C library.

#include <sys/stat.h>

int fstat(int file, struct stat *st) {

st->st_mode = S_IFCHR;

return 0;

}

getpid Process-ID; this is sometimes used to generate strings unlikely to conict with
other processes. Minimal implementation, for a system without processes:

int getpid(void) {

return 1;

}

isatty Query whether output stream is a terminal. For consistency with the other
minimal implementations, which only support output to stdout, this minimal
implementation is suggested:

int isatty(int file) {

return 1;

}

kill Send a signal. Minimal implementation:

#include <errno.h>

#undef errno

extern int errno;

int kill(int pid, int sig) {

errno = EINVAL;

return -1;

}

Chapter 12: System Calls 267

link Establish a new name for an existing �le. Minimal implementation:

#include <errno.h>

#undef errno

extern int errno;

int link(char *old, char *new) {

errno = EMLINK;

return -1;

}

lseek Set position in a �le. Minimal implementation:

int lseek(int file, int ptr, int dir) {

return 0;

}

open Open a �le. Minimal implementation:

int open(const char *name, int flags, int mode) {

return -1;

}

read Read from a �le. Minimal implementation:

int read(int file, char *ptr, int len) {

return 0;

}

sbrk Increase program data space. As malloc and related functions depend on this,
it is useful to have a working implementation. The following su�ces for a
standalone system; it exploits the symbol _end automatically de�ned by the
GNU linker.

caddr_t sbrk(int incr) {

extern char _end; /* De�ned by the linker */

static char *heap_end;

char *prev_heap_end;

if (heap_end == 0) {

heap_end = &_end;

}

prev_heap_end = heap_end;

if (heap_end + incr > stack_ptr) {

write (1, "Heap and stack collision\n", 25);

abort ();

}

heap_end += incr;

return (caddr_t) prev_heap_end;

}

stat Status of a �le (by name). Minimal implementation:

int stat(char *file, struct stat *st) {

268 Red Hat newlib C Library, Full

st->st_mode = S_IFCHR;

return 0;

}

times Timing information for current process. Minimal implementation:

int times(struct tms *buf) {

return -1;

}

unlink Remove a �le's directory entry. Minimal implementation:

#include <errno.h>

#undef errno

extern int errno;

int unlink(char *name) {

errno = ENOENT;

return -1;

}

wait Wait for a child process. Minimal implementation:

#include <errno.h>

#undef errno

extern int errno;

int wait(int *status) {

errno = ECHILD;

return -1;

}

write Write to a �le. `libc' subroutines will use this system routine for output to all
�les, including stdout|so if you need to generate any output, for example to
a serial port for debugging, you should make your minimal write capable of
doing this. The following minimal implementation is an incomplete example;
it relies on a outbyte subroutine (not shown; typically, you must write this in
assembler from examples provided by your hardware manufacturer) to actually
perform the output.

int write(int file, char *ptr, int len) {

int todo;

for (todo = 0; todo < len; todo++) {

outbyte (*ptr++);

}

return len;

}

Chapter 12: System Calls 269

12.2 Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that require reentrancy,
`libc.a' provides cover routines (for example, the reentrant version of fork is _fork_r).
These cover routines are consistent with the other reentrant subroutines in this library,
and achieve reentrancy by using a reserved global data block (see Chapter 10 [Reentrancy],
page 259).

_open_r A reentrant version of open. It takes a pointer to the global data block, which
holds errno.

int _open_r(void *reent,

const char *file, int flags, int mode);

_close_r A reentrant version of close. It takes a pointer to the global data block, which
holds errno.

int _close_r(void *reent, int fd);

_lseek_r A reentrant version of lseek. It takes a pointer to the global data block, which
holds errno.

off_t _lseek_r(void *reent,

int fd, off_t pos, int whence);

_read_r A reentrant version of read. It takes a pointer to the global data block, which
holds errno.

long _read_r(void *reent,

int fd, void *buf, size_t cnt);

_write_r A reentrant version of write. It takes a pointer to the global data block, which
holds errno.

long _write_r(void *reent,

int fd, const void *buf, size_t cnt);

_fork_r A reentrant version of fork. It takes a pointer to the global data block, which
holds errno.

int _fork_r(void *reent);

_wait_r A reentrant version of wait. It takes a pointer to the global data block, which
holds errno.

int _wait_r(void *reent, int *status);

_stat_r A reentrant version of stat. It takes a pointer to the global data block, which
holds errno.

int _stat_r(void *reent,

const char *file, struct stat *pstat);

_fstat_r A reentrant version of fstat. It takes a pointer to the global data block, which
holds errno.

int _fstat_r(void *reent,

int fd, struct stat *pstat);

_link_r A reentrant version of link. It takes a pointer to the global data block, which
holds errno.

270 Red Hat newlib C Library, Full

int _link_r(void *reent,

const char *old, const char *new);

_unlink_r

A reentrant version of unlink. It takes a pointer to the global data block, which
holds errno.

int _unlink_r(void *reent, const char *file);

_sbrk_r A reentrant version of sbrk. It takes a pointer to the global data block, which
holds errno.

char *_sbrk_r(void *reent, size_t incr);

Chapter 13: Variable Argument Lists 271

13 Variable Argument Lists

The printf family of functions is de�ned to accept a variable number of arguments, rather
than a �xed argument list. You can de�ne your own functions with a variable argument
list, by using macro de�nitions from either `stdarg.h' (for compatibility with ANSI C) or
from `varargs.h' (for compatibility with a popular convention prior to ANSI C).

13.1 ANSI-standard macros, `stdarg.h'

In ANSI C, a function has a variable number of arguments when its parameter list ends
in an ellipsis (...). The parameter list must also include at least one explicitly named
argument; that argument is used to initialize the variable list data structure.

ANSI C de�nes three macros (va_start, va_arg, and va_end) to operate on variable argu-
ment lists. `stdarg.h' also de�nes a special type to represent variable argument lists: this
type is called va_list.

272 Red Hat newlib C Library, Full

13.1.1 Initialize variable argument list

Synopsis

#include <stdarg.h>

void va_start(va_list ap, rightmost);

Description

Use va_start to initialize the variable argument list ap, so that va_arg can extract values
from it. rightmost is the name of the last explicit argument in the parameter list (the
argument immediately preceding the ellipsis `...' that ags variable arguments in an ANSI
C function header). You can only use va_start in a function declared using this ellipsis
notation (not, for example, in one of its subfunctions).

Returns

va_start does not return a result.

Portability

ANSI C requires va_start.

Chapter 13: Variable Argument Lists 273

13.1.2 Extract a value from argument list

Synopsis

#include <stdarg.h>

type va_arg(va_list ap, type);

Description

va_arg returns the next unprocessed value from a variable argument list ap (which you must
previously create with va start). Specify the type for the value as the second parameter to
the macro, type.

You may pass a va_list object ap to a subfunction, and use va_arg from the subfunction
rather than from the function actually declared with an ellipsis in the header; however,
in that case you may only use va_arg from the subfunction. ANSI C does not permit
extracting successive values from a single variable-argument list from di�erent levels of the
calling stack.

There is no mechanism for testing whether there is actually a next argument available; you
might instead pass an argument count (or some other data that implies an argument count)
as one of the �xed arguments in your function call.

Returns

va_arg returns the next argument, an object of type type.

Portability

ANSI C requires va_arg.

274 Red Hat newlib C Library, Full

13.1.3 Abandon a variable argument list

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

Use va_end to declare that your program will not use the variable argument list ap any
further.

Returns

va_end does not return a result.

Portability

ANSI C requires va_end.

13.2 Traditional macros, `varargs.h'

If your C compiler predates ANSI C, you may still be able to use variable argument lists
using the macros from the `varargs.h' header �le. These macros resemble their ANSI
counterparts, but have important di�erences in usage. In particular, since traditional C has
no declaration mechanism for variable argument lists, two additional macros are provided
simply for the purpose of de�ning functions with variable argument lists.

As with `stdarg.h', the type va_list is used to hold a data structure representing a
variable argument list.

Chapter 13: Variable Argument Lists 275

13.2.1 Declare variable arguments

Synopsis

#include <varargs.h>

function(va_alist)

va_dcl

Description

To use the `varargs.h' version of variable argument lists, you must declare your function
with a call to the macro va_alist as its argument list, and use va_dcl as the declaration.
Do not use a semicolon after va_dcl.

Returns

These macros cannot be used in a context where a return is syntactically possible.

Portability

va alist and va dcl were the most widespread method of declaring variable argument lists
prior to ANSI C.

276 Red Hat newlib C Library, Full

13.2.2 Initialize variable argument list

Synopsis

#include <varargs.h>

va_list ap;

va_start(ap);

Description

With the `varargs.h' macros, use va_start to initialize a data structure ap to permit
manipulating a variable argument list. ap must have the type va alist.

Returns

va_start does not return a result.

Portability

va_start is also de�ned as a macro in ANSI C, but the de�nitions are incompatible; the
ANSI version has another parameter besides ap.

Chapter 13: Variable Argument Lists 277

13.2.3 Extract a value from argument list

Synopsis

#include <varargs.h>

type va_arg(va_list ap, type);

Description

va_arg returns the next unprocessed value from a variable argument list ap (which you must
previously create with va start). Specify the type for the value as the second parameter to
the macro, type.

Returns

va_arg returns the next argument, an object of type type.

Portability

The va_arg de�ned in `varargs.h' has the same syntax and usage as the ANSI C version
from `stdarg.h'.

278 Red Hat newlib C Library, Full

13.2.4 Abandon a variable argument list

Synopsis

#include <varargs.h>

va_end(va_list ap);

Description

Use va_end to declare that your program will not use the variable argument list ap any
further.

Returns

va_end does not return a result.

Portability

The va_end de�ned in `varargs.h' has the same syntax and usage as the ANSI C version
from `stdarg.h'.

Index 279

Index

__env_lock . 18

__env_unlock . 18

__malloc_lock . 28

__malloc_unlock . 28

__tz_lock . 253

__tz_unlock . 253

_asctime_r . 242

_atoi_r . 11

_atol_r . 11

_atoll_r . 12

_calloc_r . 13

_close_r . 269

_exit . 265

_Exit . 4

_fclose_r . 95

_fcloseall_r . 96

_fdopen_r . 97

_fgetc_r . 101

_fgetpos_r . 102

_fgets_r . 103

_fopen_r . 106

_fork_r . 269

_fputc_r . 110

_fputs_r . 111

_fread_r . 112

_free_r . 25

_freopen_r . 113

_fseek_r . 114

_fseeko_r . 114

_fsetpos_r . 115

_fstat_r . 269

_ftell_r . 116

_ftello_r . 116

_fwrite_r . 119

_getc_r . 120

_getc_unlocked_r . 121

_getchar_r . 122

_getchar_unlocked_r . 123

_gets_r . 126

_impure_ptr . 259

_link_r . 269

_localeconv_r . 257

_lseek_r . 269

_mallinfo_r . 27

_malloc_r . 25

_malloc_stats_r . 27

_malloc_usable_size_r . 25

_mallopt_r . 27

_memalign_r . 25

_mkstemp_r . 128

_mktemp_r . 128

_open_r . 269

_perror_r . 130

_putc_r . 131
_putc_unlocked_r . 132
_putchar_r . 133
_puts_r . 135
_raise_r . 238
_read_r . 269
_realloc_r . 25
_reent . 259
_rewind_r . 139
_sbrk_r . 270
_setlocale_r . 257
_signal_r . 239
_stat_r . 269
_strtod_r . 36
_strtol_r . 37
_strtoll_r . 39
_strtoul_r . 41
_strtoull_r . 43
_system_r . 53
_tempnam_r . 158
_tmpfile_r . 157
_tmpnam_r . 158
_tolower . 70
_toupper . 71
_ungetc_r . 159
_unlink_r . 270
_wait_r . 269
_wcstol_r . 45
_wcstoll_r . 47
_wcstoul_r . 49
_wcstoull_r . 51
_write_r . 269

A
a64l . 5
abort . 6
abs . 7
asctime . 242
asiprintf . 144
asniprintf . 144
asnprintf . 146
asprintf . 146
assert . 8
atexit . 9
atof . 10
atoff . 10
atoi . 11
atol . 11
atoll . 12

B
bcmp . 166
bzero . 168

280 Red Hat newlib C Library, Full

C
calloc . 13

clearerr . 92

clock . 243

close . 265

ctime . 244

D
difftime . 245

diprintf . 93

div . 14

dprintf . 94

drand48 . 34

E
ecvt . 15

ecvtbuf . 17

environ . 20, 265

erand48 . 34

errno global vs macro . 265

execve . 265

exit . 19

extra argument, reentrant fns 259

F
fclose . 95

fcloseall . 96

fcvt . 15

fcvtbuf . 17

fdopen . 97

feof . 98

ferror . 99

fflush . 100

ffs . 262

fgetc . 101

fgetpos . 102

fgets . 103

fileno . 104

fiprintf . 144

fiscanf . 145

fmemopen . 105

fopen . 106

fopencookie . 108

fork . 266

fprintf . 146

fputc . 110

fputs . 111

fread . 112

free . 25

freopen . 113

fropen . 117

fscanf . 152

fseek . 114

fseeko . 114

fsetpos . 115

fstat . 266

ftell . 116

ftello . 116

funopen . 117

fwopen . 117

fwrite . 119

G
gcvt . 16

gcvtf . 16

getc . 120

getc_unlocked . 121

getchar . 122

getchar_unlocked . 123

getdelim . 124

getenv . 20

getline . 125

getpid . 266

gets . 126

getw . 127

global reentrancy structure 259

gmtime . 246

I
index . 169

iprintf . 144

isalnum . 58

isalpha . 59

isascii . 60

isatty . 266

iscanf . 145

iscntrl . 61

isdigit . 62

isgraph . 64

islower . 63

isprint . 64

ispunct . 65

isspace . 66

isupper . 67

iswalnum . 72

iswalpha . 73

iswblank . 75

iswcntrl . 74

iswctype . 84

iswdigit . 76

iswgraph . 77

iswlower . 78

iswprint . 79

iswpunct . 80

iswspace . 81

iswupper . 82

iswxdigit . 83

isxdigit . 68

Index 281

J
jrand48 . 34

K
kill . 266

L
l64a . 5

labs . 21

lcong48 . 34

ldiv . 22

link . 267

linking the C library . 265

list of reentrant functions . 259

llabs . 23

lldiv . 24

localeconv . 257

localtime . 247

lrand48 . 34

lseek . 267

M
mallinfo . 27

malloc . 25

malloc_stats . 27

malloc_usable_size . 25

mallopt . 27

mblen . 29

mbstowcs . 30

mbtowc . 31

memalign . 25

memchr . 171

memcmp . 172

memmem . 174

memmove . 175

memset . 177

mkstemp . 128

mktemp . 128

mktime . 248

mrand48 . 34

N
nrand48 . 34

O
on_exit . 32

open . 267

open_memstream . 129

OS interface subroutines . 265

P
perror . 130

printf . 146

putc . 131

putc_unlocked . 132

putchar . 133

putchar_unlocked . 134

puts . 135

putw . 136

R
raise . 238

rand . 33

rand_r . 33

rand48 . 34

read . 267

realloc . 25

reent.h . 259

reentrancy . 259

reentrancy structure . 259

reentrant function list . 259

remove . 137

rename . 138

rewind . 139

rindex . 178

S
sbrk . 267

scanf . 152

seed48 . 34

setbuf . 140

setbuffer . 141

setlinebuf . 142

setlocale . 257

setvbuf . 143

signal . 239

siprintf . 144

siscanf . 145

sniprintf . 144

snprintf . 146

sprintf . 146

srand . 33

srand48 . 34

sscanf . 152

stat . 267

stpcpy . 179

stpncpy . 180

strcasecmp . 181

strcasestr . 182

strcat . 183

strchr . 184

strcmp . 185

strcoll . 186

strcpy . 187

strcspn . 188

strerror . 189

strerror_r . 193

strftime . 249

282 Red Hat newlib C Library, Full

strlen . 194
strlwr . 195
strncasecmp . 196
strncat . 197
strncmp . 198
strncpy . 199
strnlen . 200
strpbrk . 201
strrchr . 202
strsep . 205
strspn . 203
strstr . 204
strtod . 36
strtof . 36
strtok . 205
strtok_r . 205
strtol . 37
strtoll . 39
strtoul . 41
strtoull . 43
strupr . 206
strxfrm . 207
stubs . 265
subroutines for OS interface 265
system . 53

T
tempnam . 158
time . 252
times . 268
tmpfile . 157
tmpnam . 158
toascii . 69
tolower . 70
toupper . 71
towctrans . 88
towlower . 86
towupper . 87
tzset . 254

U
unctrl . 263
unctrllen . 263
ungetc . 159
unlink . 268

V
va_alist . 275

va_arg . 273, 277

va_dcl . 275

va_end . 274, 278

va_start . 272, 276

vasiprintf . 163

vasniprintf . 163

vasnprintf . 160

vasprintf . 160

vdiprintf . 93

vdprintf . 94

vfiprintf . 163

vfiscanf . 164

vfprintf . 160

vfscanf . 162

viprintf . 163

viscanf . 164

vprintf . 160

vscanf . 162

vsiprintf . 163

vsiscanf . 164

vsniprintf . 163

vsnprintf . 160

vsprintf . 160

vsscanf . 162

W
wait . 268

wcscat . 215

wcscoll . 218

wcsnlen . 229

wcstol . 45

wcstoll . 47

wcstombs . 54

wcstoul . 49

wcstoull . 51

wcswidth . 234

wcsxfrm . 235

wctomb . 55

wctrans . 89

wctype . 85

wcwidth . 236

write . 268

Index 283

The body of this manual is set in
cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.
cmti10 at 10.95pt and
cmsl10 at 10.95pt

are used for emphasis.

284 Red Hat newlib C Library, Full

i

Table of Contents

1 Introduction . 1

2 Standard Utility Functions (`stdlib.h') 3
2.1 _Exit|end program execution with no cleanup processing 4
2.2 a64l, l64a|convert between radix-64 ASCII string and long . . . 5
2.3 abort|abnormal termination of a program 6
2.4 abs|integer absolute value (magnitude) . 7
2.5 assert|macro for debugging diagnostics . 8
2.6 atexit|request execution of functions at program exit 9
2.7 atof, atoff|string to double or oat . 10
2.8 atoi, atol|string to integer . 11
2.9 atoll|convert a string to a long long integer 12
2.10 calloc|allocate space for arrays. 13
2.11 div|divide two integers . 14
2.12 ecvt, ecvtf, fcvt, fcvtf|double or oat to string 15
2.13 gvcvt, gcvtf|format double or oat as string 16
2.14 ecvtbuf, fcvtbuf|double or oat to string 17
2.15 __env_lock, __env_unlock|lock environ variable 18
2.16 exit|end program execution . 19
2.17 getenv|look up environment variable . 20
2.18 labs|long integer absolute value . 21
2.19 ldiv|divide two long integers . 22
2.20 llabs|compute the absolute value of an long long integer. . . . 23
2.21 lldiv|divide two long long integers . 24
2.22 malloc, realloc, free|manage memory 25
2.23 mallinfo, malloc_stats, mallopt|malloc support 27
2.24 __malloc_lock, __malloc_unlock|lock malloc pool 28
2.25 mblen|minimal multibyte length function 29
2.26 mbstowcs|minimal multibyte string to wide char converter . . 30
2.27 mbtowc|minimal multibyte to wide char converter 31
2.28 on_exit|request execution of function with argument at

program exit . 32
2.29 rand, srand|pseudo-random numbers . 33
2.30 rand48, drand48, erand48, lrand48, nrand48, mrand48,

jrand48, srand48, seed48, lcong48|pseudo-random number
generators and initialization routines . 34

2.31 strtod, strtof|string to double or oat 36
2.32 strtol|string to long . 37
2.33 strtoll|string to long long . 39
2.34 strtoul|string to unsigned long . 41
2.35 strtoull|string to unsigned long long . 43
2.36 wcstol|wide string to long . 45
2.37 wcstoll|wide string to long long . 47

ii Red Hat newlib C Library, Full

2.38 wcstoul|wide string to unsigned long . 49
2.39 wcstoull|wide string to unsigned long long 51
2.40 system|execute command string . 53
2.41 wcstombs|minimal wide char string to multibyte string

converter . 54
2.42 wctomb|minimal wide char to multibyte converter 55

3 Character Type Macros and Functions
(`ctype.h') . 57

3.1 isalnum|alphanumeric character predicate 58
3.2 isalpha|alphabetic character predicate . 59
3.3 isascii|ASCII character predicate . 60
3.4 iscntrl|control character predicate . 61
3.5 isdigit|decimal digit predicate . 62
3.6 islower|lowercase character predicate . 63
3.7 isprint, isgraph|printable character predicates 64
3.8 ispunct|punctuation character predicate 65
3.9 isspace|whitespace character predicate . 66
3.10 isupper|uppercase character predicate . 67
3.11 isxdigit|hexadecimal digit predicate . 68
3.12 toascii|force integers to ASCII range . 69
3.13 tolower|translate characters to lowercase 70
3.14 toupper|translate characters to uppercase 71
3.15 iswalnum|alphanumeric wide character test 72
3.16 iswalpha|alphabetic wide character test 73
3.17 iswcntrl|control wide character test . 74
3.18 iswblank|blank wide character test . 75
3.19 iswdigit|decimal digit wide character test 76
3.20 iswgraph|graphic wide character test . 77
3.21 iswlower|lowercase wide character test . 78
3.22 iswprint|printable wide character test . 79
3.23 iswpunct|punctuation wide character test 80
3.24 iswspace|whitespace wide character test 81
3.25 iswupper|uppercase wide character test 82
3.26 iswxdigit|hexadecimal digit wide character test 83
3.27 iswctype|extensible wide-character test 84
3.28 wctype|get wide-character classi�cation type 85
3.29 towlower|translate wide characters to lowercase 86
3.30 towupper|translate wide characters to uppercase 87
3.31 towctrans|extensible wide-character translation 88
3.32 wctrans|get wide-character translation type 89

iii

4 Input and Output (`stdio.h') 91
4.1 clearerr|clear �le or stream error indicator 92
4.2 diprintf, vdiprintf|print to a �le descriptor (integer only) . . 93
4.3 dprintf, vdprintf|print to a �le descriptor. 94
4.4 fclose|close a �le . 95
4.5 fcloseall|close all �les . 96
4.6 fdopen|turn open �le into a stream . 97
4.7 feof|test for end of �le . 98
4.8 ferror|test whether read/write error has occurred 99
4.9 fflush|ush bu�ered �le output . 100
4.10 fgetc|get a character from a �le or stream 101
4.11 fgetpos|record position in a stream or �le 102
4.12 fgets|get character string from a �le or stream 103
4.13 fileno|return �le descriptor associated with stream 104
4.14 fmemopen|open a stream around a �xed-length string 105
4.15 fopen|open a �le . 106
4.16 fopencookie|open a stream with custom callbacks 108
4.17 fputc|write a character on a stream or �le 110
4.18 fputs|write a character string in a �le or stream 111
4.19 fread|read array elements from a �le . 112
4.20 freopen|open a �le using an existing �le descriptor 113
4.21 fseek, fseeko|set �le position . 114
4.22 fsetpos|restore position of a stream or �le 115
4.23 ftell, ftello|return position in a stream or �le 116
4.24 funopen, fropen, fwopen|open a stream with custom callbacks

. 117
4.25 fwrite|write array elements . 119
4.26 getc|read a character (macro) . 120
4.27 getc_unlocked|non-thread-safe version of getc (macro) 121
4.28 getchar|read a character (macro) . 122
4.29 getchar_unlocked|non-thread-safe version of getchar (macro)

. 123
4.30 getdelim|read a line up to a speci�ed line delimiter 124
4.31 getline|read a line from a �le . 125
4.32 gets|get character string (obsolete, use fgets instead) 126
4.33 getw|read a word (int) . 127
4.34 mktemp, mkstemp|generate unused �le name 128
4.35 open_memstream|open a write stream around an

arbitrary-length string . 129
4.36 perror|print an error message on standard error 130
4.37 putc|write a character (macro) . 131
4.38 putc_unlocked|non-thread-safe version of putc (macro) . . . 132
4.39 putchar|write a character (macro) . 133
4.40 putchar_unlocked|non-thread-safe version of putchar (macro)

. 134
4.41 puts|write a character string . 135
4.42 putw|write a word (int) . 136
4.43 remove|delete a �le's name . 137

iv Red Hat newlib C Library, Full

4.44 rename|rename a �le . 138
4.45 rewind|reinitialize a �le or stream . 139
4.46 setbuf|specify full bu�ering for a �le or stream 140
4.47 setbuffer|specify full bu�ering for a �le or stream with size

. 141
4.48 setlinebuf|specify line bu�ering for a �le or stream 142
4.49 setvbuf|specify �le or stream bu�ering 143
4.50 siprintf, fiprintf, iprintf, sniprintf, asiprintf,

asniprintf|format output (integer only) 144
4.51 siscanf, fiscanf, iscanf|scan and format non-oating input

. 145
4.52 sprintf, fprintf, printf, snprintf, asprintf,

asnprintf|format output . 146
4.53 sscanf, fscanf, scanf|scan and format input 152
4.54 tmpfile|create a temporary �le . 157
4.55 tmpnam, tempnam|name for a temporary �le 158
4.56 ungetc|push data back into a stream . 159
4.57 vfprintf, vprintf, vsprintf, vsnprintf, vasprintf,

vasnprintf|format argument list . 160
4.58 vfscanf, vscanf, vsscanf|format argument list 162
4.59 viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf,

vasniprintf|format argument list (integer only) 163
4.60 viscanf, vfiscanf, vsiscanf|format argument list 164

5 Strings and Memory (`string.h') 165
5.1 bcmp|compare two memory areas . 166
5.2 bcopy|copy memory regions . 167
5.3 bzero|initialize memory to zero . 168
5.4 index|search for character in string . 169
5.5 memccpy|copy memory regions with end-token check 170
5.6 memchr|�nd character in memory . 171
5.7 memcmp|compare two memory areas . 172
5.8 memcpy|copy memory regions . 173
5.9 memmem|�nd memory segment . 174
5.10 memmove|move possibly overlapping memory 175
5.11 mempcpy|copy memory regions and return end pointer 176
5.12 memset|set an area of memory . 177
5.13 rindex|reverse search for character in string 178
5.14 stpcpy|copy string returning a pointer to its end 179
5.15 stpncpy|counted copy string returning a pointer to its end

. 180
5.16 strcasecmp|case-insensitive character string compare 181
5.17 strcasestr|case-insensitive character string search 182
5.18 strcat|concatenate strings . 183
5.19 strchr|search for character in string . 184
5.20 strcmp|character string compare . 185
5.21 strcoll|locale-speci�c character string compare 186
5.22 strcpy|copy string . 187

v

5.23 strcspn|count characters not in string 188
5.24 strerror|convert error number to string 189
5.25 strerror_r|convert error number to string and copy to bu�er

. 193
5.26 strlen|character string length . 194
5.27 strlwr|force string to lowercase. 195
5.28 strncasecmp|case-insensitive character string compare 196
5.29 strncat|concatenate strings . 197
5.30 strncmp|character string compare . 198
5.31 strncpy|counted copy string . 199
5.32 strnlen|character string length . 200
5.33 strpbrk|�nd characters in string . 201
5.34 strrchr|reverse search for character in string 202
5.35 strspn|�nd initial match . 203
5.36 strstr|�nd string segment . 204
5.37 strtok, strtok_r, strsep|get next token from a string 205
5.38 strupr|force string to uppercase . 206
5.39 strxfrm|transform string . 207
5.40 swab|swap adjacent bytes. 208

6 Wide Character Strings (`wchar.h') 209
6.1 wmemchr|�nd a wide character in memory 210
6.2 wmemcmp|compare wide characters in memory 211
6.3 wmemcpy|copy wide characters in memory 212
6.4 wmemmove|copy wide characters in memory with overlapping

areas. 213
6.5 wmemset|set wide characters in memory . 214
6.6 wcscat|concatenate two wide-character strings 215
6.7 wcschr|wide-character string scanning operation 216
6.8 wcscmp|compare two wide-character strings 217
6.9 wcscoll|locale-speci�c wide-character string compare 218
6.10 wcscpy|copy a wide-character string . 219
6.11 wcpcpy|copy a wide-character string returning a pointer to its

end . 220
6.12 wcscspn|get length of a complementary wide substring 221
6.13 wcslcat|concatenate wide-character strings to speci�ed length

. 222
6.14 wcslcpy|copy a wide-character string to speci�ed length . . . 223
6.15 wcslen|get wide-character string length 224
6.16 wcsncat|concatenate part of two wide-character strings 225
6.17 wcsncmp|compare part of two wide-character strings 226
6.18 wcsncpy|copy part of a wide-character string 227
6.19 wcpncpy|copy part of a wide-character string returning a

pointer to its end . 228
6.20 wcsnlen|get �xed-size wide-character string length 229
6.21 wcspbrk|-scan wide-character string for a wide-character code

. 230
6.22 wcsrchr|wide-character string scanning operation 231

vi Red Hat newlib C Library, Full

6.23 wcsspn|get length of a wide substring . 232
6.24 wcsstr|�nd a wide-character substring 233
6.25 wcswidth|number of column positions of a wide-character string

. 234
6.26 wcsxfrm|locale-speci�c wide-character string transformation

. 235
6.27 wcwidth|number of column positions of a wide-character code

. 236

7 Signal Handling (`signal.h') 237
7.1 raise|send a signal . 238
7.2 signal|specify handler subroutine for a signal 239

8 Time Functions (`time.h') 241
8.1 asctime|format time as string . 242
8.2 clock|cumulative processor time . 243
8.3 ctime|convert time to local and format as string 244
8.4 difftime|subtract two times . 245
8.5 gmtime|convert time to UTC traditional form 246
8.6 localtime|convert time to local representation 247
8.7 mktime|convert time to arithmetic representation 248
8.8 strftime|exible calendar time formatter 249
8.9 time|get current calendar time (as single number) 252
8.10 __tz_lock, __tz_unlock|lock time zone global variables . . . 253
8.11 tzset|set timezone characteristics from TZ environment

variable . 254

9 Locale (`locale.h') . 255
9.1 setlocale, localeconv|select or query locale 257

10 Reentrancy. 259

11 Miscellaneous Macros and Functions 261
11.1 ffs|�nd �rst bit set in a word . 262
11.2 unctrl|get printable representation of a character 263

12 System Calls . 265
12.1 De�nitions for OS interface . 265
12.2 Reentrant covers for OS subroutines . 269

vii

13 Variable Argument Lists 271
13.1 ANSI-standard macros, `stdarg.h' . 271

13.1.1 Initialize variable argument list . 272
13.1.2 Extract a value from argument list . 273
13.1.3 Abandon a variable argument list . 274

13.2 Traditional macros, `varargs.h' . 274
13.2.1 Declare variable arguments . 275
13.2.2 Initialize variable argument list . 276
13.2.3 Extract a value from argument list . 277
13.2.4 Abandon a variable argument list . 278

Index . 279

viii Red Hat newlib C Library, Full

	Introduction
	Standard Utility Functions (stdlib.h)
	_Exit---end program execution with no cleanup processing
	a64l, l64a---convert between radix-64 ASCII string and long
	abort---abnormal termination of a program
	abs---integer absolute value (magnitude)
	assert---macro for debugging diagnostics
	atexit---request execution of functions at program exit
	atof, atoff---string to double or float
	atoi, atol---string to integer
	atoll---convert a string to a long long integer
	calloc---allocate space for arrays
	div---divide two integers
	ecvt, ecvtf, fcvt, fcvtf---double or float to string
	gvcvt, gcvtf---format double or float as string
	ecvtbuf, fcvtbuf---double or float to string
	__env_lock, __env_unlock---lock environ variable
	exit---end program execution
	getenv---look up environment variable
	labs---long integer absolute value
	ldiv---divide two long integers
	llabs---compute the absolute value of an long long integer.
	lldiv---divide two long long integers
	malloc, realloc, free---manage memory
	mallinfo, malloc_stats, mallopt---malloc support
	__malloc_lock, __malloc_unlock---lock malloc pool
	mblen---minimal multibyte length function
	mbstowcs---minimal multibyte string to wide char converter
	mbtowc---minimal multibyte to wide char converter
	on_exit---request execution of function with argument at program exit
	rand, srand---pseudo-random numbers
	rand48, drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48---pseudo-random number generators and initialization routines
	strtod, strtof---string to double or float
	strtol---string to long
	strtoll---string to long long
	strtoul---string to unsigned long
	strtoull---string to unsigned long long
	wcstol---wide string to long
	wcstoll---wide string to long long
	wcstoul---wide string to unsigned long
	wcstoull---wide string to unsigned long long
	system---execute command string
	wcstombs---minimal wide char string to multibyte string converter
	wctomb---minimal wide char to multibyte converter

	Character Type Macros and Functions (ctype.h)
	isalnum---alphanumeric character predicate
	isalpha---alphabetic character predicate
	isascii---ASCII character predicate
	iscntrl---control character predicate
	isdigit---decimal digit predicate
	islower---lowercase character predicate
	isprint, isgraph---printable character predicates
	ispunct---punctuation character predicate
	isspace---whitespace character predicate
	isupper---uppercase character predicate
	isxdigit---hexadecimal digit predicate
	toascii---force integers to ASCII range
	tolower---translate characters to lowercase
	toupper---translate characters to uppercase
	iswalnum---alphanumeric wide character test
	iswalpha---alphabetic wide character test
	iswcntrl---control wide character test
	iswblank---blank wide character test
	iswdigit---decimal digit wide character test
	iswgraph---graphic wide character test
	iswlower---lowercase wide character test
	iswprint---printable wide character test
	iswpunct---punctuation wide character test
	iswspace---whitespace wide character test
	iswupper---uppercase wide character test
	iswxdigit---hexadecimal digit wide character test
	iswctype---extensible wide-character test
	wctype---get wide-character classification type
	towlower---translate wide characters to lowercase
	towupper---translate wide characters to uppercase
	towctrans---extensible wide-character translation
	wctrans---get wide-character translation type

	Input and Output (stdio.h)
	clearerr---clear file or stream error indicator
	diprintf, vdiprintf---print to a file descriptor (integer only)
	dprintf, vdprintf---print to a file descriptor
	fclose---close a file
	fcloseall---close all files
	fdopen---turn open file into a stream
	feof---test for end of file
	ferror---test whether read/write error has occurred
	fflush---flush buffered file output
	fgetc---get a character from a file or stream
	fgetpos---record position in a stream or file
	fgets---get character string from a file or stream
	fileno---return file descriptor associated with stream
	fmemopen---open a stream around a fixed-length string
	fopen---open a file
	fopencookie---open a stream with custom callbacks
	fputc---write a character on a stream or file
	fputs---write a character string in a file or stream
	fread---read array elements from a file
	freopen---open a file using an existing file descriptor
	fseek, fseeko---set file position
	fsetpos---restore position of a stream or file
	ftell, ftello---return position in a stream or file
	funopen, fropen, fwopen---open a stream with custom callbacks
	fwrite---write array elements
	getc---read a character (macro)
	getc_unlocked---non-thread-safe version of getc (macro)
	getchar---read a character (macro)
	getchar_unlocked---non-thread-safe version of getchar (macro)
	getdelim---read a line up to a specified line delimiter
	getline---read a line from a file
	gets---get character string (obsolete, use fgets instead)
	getw---read a word (int)
	mktemp, mkstemp---generate unused file name
	open_memstream---open a write stream around an arbitrary-length string
	perror---print an error message on standard error
	putc---write a character (macro)
	putc_unlocked---non-thread-safe version of putc (macro)
	putchar---write a character (macro)
	putchar_unlocked---non-thread-safe version of putchar (macro)
	puts---write a character string
	putw---write a word (int)
	remove---delete a file's name
	rename---rename a file
	rewind---reinitialize a file or stream
	setbuf---specify full buffering for a file or stream
	setbuffer---specify full buffering for a file or stream with size
	setlinebuf---specify line buffering for a file or stream
	setvbuf---specify file or stream buffering
	siprintf, fiprintf, iprintf, sniprintf, asiprintf, asniprintf---format output (integer only)
	siscanf, fiscanf, iscanf---scan and format non-floating input
	sprintf, fprintf, printf, snprintf, asprintf, asnprintf---format output
	sscanf, fscanf, scanf---scan and format input
	tmpfile---create a temporary file
	tmpnam, tempnam---name for a temporary file
	ungetc---push data back into a stream
	vfprintf, vprintf, vsprintf, vsnprintf, vasprintf, vasnprintf---format argument list
	vfscanf, vscanf, vsscanf---format argument list
	viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf, vasniprintf---format argument list (integer only)
	viscanf, vfiscanf, vsiscanf---format argument list

	Strings and Memory (string.h)
	bcmp---compare two memory areas
	bcopy---copy memory regions
	bzero---initialize memory to zero
	index---search for character in string
	memccpy---copy memory regions with end-token check
	memchr---find character in memory
	memcmp---compare two memory areas
	memcpy---copy memory regions
	memmem---find memory segment
	memmove---move possibly overlapping memory
	mempcpy---copy memory regions and return end pointer
	memset---set an area of memory
	rindex---reverse search for character in string
	stpcpy---copy string returning a pointer to its end
	stpncpy---counted copy string returning a pointer to its end
	strcasecmp---case-insensitive character string compare
	strcasestr---case-insensitive character string search
	strcat---concatenate strings
	strchr---search for character in string
	strcmp---character string compare
	strcoll---locale-specific character string compare
	strcpy---copy string
	strcspn---count characters not in string
	strerror---convert error number to string
	strerror_r---convert error number to string and copy to buffer
	strlen---character string length
	strlwr---force string to lowercase
	strncasecmp---case-insensitive character string compare
	strncat---concatenate strings
	strncmp---character string compare
	strncpy---counted copy string
	strnlen---character string length
	strpbrk---find characters in string
	strrchr---reverse search for character in string
	strspn---find initial match
	strstr---find string segment
	strtok, strtok_r, strsep---get next token from a string
	strupr---force string to uppercase
	strxfrm---transform string
	swab---swap adjacent bytes

	Wide Character Strings (wchar.h)
	wmemchr---find a wide character in memory
	wmemcmp---compare wide characters in memory
	wmemcpy---copy wide characters in memory
	wmemmove---copy wide characters in memory with overlapping areas
	wmemset---set wide characters in memory
	wcscat---concatenate two wide-character strings
	wcschr---wide-character string scanning operation
	wcscmp---compare two wide-character strings
	wcscoll---locale-specific wide-character string compare
	wcscpy---copy a wide-character string
	wcpcpy---copy a wide-character string returning a pointer to its end
	wcscspn---get length of a complementary wide substring
	wcslcat---concatenate wide-character strings to specified length
	wcslcpy---copy a wide-character string to specified length
	wcslen---get wide-character string length
	wcsncat---concatenate part of two wide-character strings
	wcsncmp---compare part of two wide-character strings
	wcsncpy---copy part of a wide-character string
	wcpncpy---copy part of a wide-character string returning a pointer to its end
	wcsnlen---get fixed-size wide-character string length
	wcspbrk----scan wide-character string for a wide-character code
	wcsrchr---wide-character string scanning operation
	wcsspn---get length of a wide substring
	wcsstr---find a wide-character substring
	wcswidth---number of column positions of a wide-character string
	wcsxfrm---locale-specific wide-character string transformation
	wcwidth---number of column positions of a wide-character code

	Signal Handling (signal.h)
	raise---send a signal
	signal---specify handler subroutine for a signal

	Time Functions (time.h)
	asctime---format time as string
	clock---cumulative processor time
	ctime---convert time to local and format as string
	difftime---subtract two times
	gmtime---convert time to UTC traditional form
	localtime---convert time to local representation
	mktime---convert time to arithmetic representation
	strftime---flexible calendar time formatter
	time---get current calendar time (as single number)
	__tz_lock, __tz_unlock---lock time zone global variables
	tzset---set timezone characteristics from TZ environment variable

	Locale (locale.h)
	setlocale, localeconv---select or query locale

	Reentrancy
	Miscellaneous Macros and Functions
	ffs---find first bit set in a word
	unctrl---get printable representation of a character

	System Calls
	Definitions for OS interface
	Reentrant covers for OS subroutines

	Variable Argument Lists
	ANSI-standard macros, stdarg.h
	Initialize variable argument list
	Extract a value from argument list
	Abandon a variable argument list

	Traditional macros, varargs.h
	Declare variable arguments
	Initialize variable argument list
	Extract a value from argument list
	Abandon a variable argument list

	Index

