Sourcery G++ Lite
MIPS ELF
Sourcery G++ Lite 4.4-58
Getting Started

(& (ODESOURCERY

Sourcery G++ Lite: MIPS ELF: Sourcery G++ Lite 4.4-58:
Getting Started

CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009 CodeSourcery, Inc.

All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents

P ACE .t iv
1. INteNdEd AUIENCE .. .oeviieeeie e et v
2. OFQANIZALION ...ttt et Y
3. Typographical CONVENTIONSuuiiiiiiieeiii et vi
Lo QUICK SEAMT ..ottt e e e e e et et e e e ae 1
1.1, Installation and SEt-UPc..uiiiiiiiiiii e 2
1.2. Configuring Sourcery G++ Lite for the Target SyStemoccoiiiiiiiiiieiiiiineennns 2
1.3. BUIldiNG YOUT PrOGramcoouuiiiiiiii ettt e 2
1.4. Running and Debugging YOUr PrOgramoveeuuuuneeiriieeiiiiae et eennens 2
2. Installation and CoNfIQUIATIONuiiiiiiiiiiii e 4
2.1, TEIMINOIOQY . ..eeitieeeiit et e e ettt e eeee 5
2.2, SYStem REQUITEIMENESeeutiieiiii et 5
2.3. Downloading an INSEAlIEriiiiii e 6
2.4, Installing SOUrCEry G+ LIteuiiiiiiii e 6
2.5. Installing Sourcery G++ Lite UPJatesuuviiiiiiiiiiiiiieeeii e 9
2.6. Setting up the ENVIFONMENToovvtiiiii e 9
2.7. Uninstalling SOUICEry G+ Litecoouuiiiiiiiiiiiiii e 11
3. Sourcery G+ Lite FOr MIPS ELFooouiiiiiii e 13
3.1. Included Components and FEATUIESuiiiiiiiieiiii e 14
3.2, Library Configurationsieeeiiiieeeii e 14
3.3 CSB SUPPOIT ..t 17
3.4. Using Sourcery G++ with MIPS Malta BOardscooevvviiiiiiiiiinniiiiieecie 17
3.5. Using Sourcery G++ With YAMONoiiiiiiiiiiiiiiiii e 18
3.6. Profiling SUPPOITuniiiiii e 18
3.7.USING FIash IMEIMOIY ...t 18
3.8. Additional DOCUMENTALIONccouuiiiiiiiiiee e 19
4. Using Sourcery G++ from the Command Lineccoouiiiiiiiiiniiiiie e 20
4.1. Building an ApplICAtIONuiiiiiii e 21
4.2. Running Applications on the Target SYStEMooeiiiiiiiiiiiiiie e 21
4.3. Running Applications in the SIMulatorcccooviiiiiiii e, 21
4.4. Running Applications from GDBc.uiiiiiiiiiiiiii e 22
5. CS3™: The CodeSourcery Common Startup Code SEQUENCEcccvvvriveirinieeiiiineeeeiinnnn 24
5.1, SEArTUDP SEOUEINCE ...cevtiitieie et e 25
5.2, Exit and Embedded SYSLEIMSuiiiiiiiieiiiiii e 27
5.3, MEMOIY LAYOUL ...c.enieiiiite et e 27
5.4. Interrupt Vectors and Handlerscoooiiiiiiiiii e 29
5.5, LINKEE SCIIPLS ...t 31
5.6. Supported Boards for MIPS ELFcooiiiiiii e 32
5.7. Interrupt VECtor TabIESuniiiii e 33
5.8. Regions and MemOry SECHIONSuuiiiiiiiieiiii e 33
6. Next Steps With SOUICEIY G .oouuiiiiiiii e 35
6.1. Sourcery G+ SUDSCHIPLIONSuiiiiiiieiiii e 36
6.2. Sourcery G++ KNOWIedge BaSeuiiiiiiiiiiiiiiiiecei e 37
6.3. Manuals for GNU Toolchain COMPONENTSuuiiiiiieiiiiieee e 37
A. Sourcery G++ Lite ReleaSe NOTESvuiiiiiiiiiieiii e 39
A.1. Changes in Sourcery G++ Lite for MIPS ELFooooiiiiiiiii e 40
B. SOUICErY G+ Lite LICENSES ...ttt 49
B.1. Licenses for Sourcery G++ Lite COMPONENTSouviiiiiiniiiiiiieiiiieeci e 50
B.2. Sourcery G++ Software License AGreemeNtvivvereiiiiiiiieeiii e 51

Preface

This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

Preface

1. Intended Audience

This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization

This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start”

Chapter 2, “Installation and Config-
uration”

Chapter 3, “Sourcery G++ Lite for
MIPS ELF”

Chapter 4, “Using Sourcery G++
from the Command Line”

Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Se-
quence”

Chapter 6, “Next Steps with Sourcery
G++”

Appendix A, “Sourcery G++ Lite
Release Notes”

Appendix B, “Sourcery G++ Lite
Licenses”

This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

This chapter contains information about using Sourcery G++
Lite that is specific to MIPS ELF targets. You should read
this chapter to learn how to best use Sourcery G++ Lite on
your target system.

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

CS3is CodeSourcery's low-level board support library. This
chapter describes the organization of the system startup code
and tells you how you can customize it, such as by defining
your own interrupt handlers. This chapter also documents the
boards supported by Sourcery G++ Lite and the compiler and
linker options you need to use with them.

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for MIPS ELF. You should read
through these notes to learn about new features and bug fixes.

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

Preface

3. Typographical Conventions

The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

pl acehol der Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

Vi

Chapter 1
Quick Start

This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

Quick Start

Sourcery G++ Lite for MIPS ELF is intended for developers working on embedded applications or
firmware for boards without an operating system, or that run an RTOS or boot loader. This Sourcery
G++ configuration is not intended for Linux or uClinux kernel or application development.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for MIPS ELF”.

1.1. Installation and Set-Up

Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site?, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

Install driversfor your debug device. Sourcery G++ Lite supports third-party debug devices
that communicate via the GDB remote serial protocol. If you plan to use one of these devices, follow
the manufacturer's directions to connect the device and install any required drivers or software.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System

Identify your target board. On bare-metal targets, you must explicitly specify a linker script
for your target board on your link command line. Supported boards are listed in Chapter 5, “CS3™:
The CodeSourcery Common Startup Code Sequence”. You can also choose a simulator as your target
board.

1.3. Building Your Program

Build your program with Sourcery G++ command-linetools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite. On bare-metal targets, you must specify a linker script using
the —T option on your link command line. Supported boards and linker scripts are listed in Chapter 5,
“CS3™: The CodeSourcery Common Startup Code Sequence”.

1.4. Running and Debugging Your Program

The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

Run or debug your program in the simulator. ~ Sourcery G++ Lite includes an instruction-set
simulator, which provides an easy way to run or debug your program without requiring target hard-

! http://www.codesourcery.com/gnu_toolchains/

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Quick Start

ware. The simulator can be run directly from the command line (see Section 4.3, “Running Applica-
tions in the Simulator™) or via the debugger (see Section 4.4, “Running Applications from GDB”).

Debug your program on thetarget usngMDI. You can load and execute your program on the
remote target from the debugger using the MDI protocol. Refer to Section 4.4.3, “Connecting with
MDI” for instructions on configuring MDI and using MDI from the GDB command line.

Run your program on the target using YAMON. You can run programs built with Sourcery
G++ Lite on MIPS ELF targets via the YAMON boot monitor. For instructions, refer to Section 3.5,
“Using Sourcery G++ with YAMON”. Note that you must select a YAMON linker script profile
when building your program.

Debug your program on thetarget using athird-party debug device. Sourcery G++ supports
debugging programs on the remote target using third-party debug devices that can communicate via
the GDB remote serial protocol. For command-line GDB instructions, see Section 4.4, “Running
Applications from GDB”.

Chapter 2
Installation and Configuration

This chapter explains how to install Sourcery G++ Lite. You will learn how to:
1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

Installation and Configuration

2.1. Terminology

Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is mips-sde-elf.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements

2.2.1. Host Operating System Requirements
This version of Sourcery G++ supports the following host operating systems and architectures:

» Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using 1A32,
AMDG64, and EM64T processors.

e GNU/Linux systems using 1A32, AMD64, or EM64T processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SUSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the default
/bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions. To install
Sourcery G++ Lite on these systems, you must make Zbin/sh a symbolic link to one of
the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements
In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPD IR environment variable, or /tmp if that is not set.

2.2.3. Target System Requirements

See Chapter 3, “Sourcery G++ Lite for MIPS ELF” for requirements that apply to the target system.

2.3. Downloading an Installer

If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web sitel. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal. For more information about sub-
scriptions for Sourcery G++ product releases, see Section 6.1, “Sourcery G++ Subscriptions”.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the . exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the . tar .bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite

The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

! http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Installation and Configuration

2 Sourcery G++ for ARM EABI

& wielcome!

) Important Infarmation

() Choose Install Set

O Choose Install Folder
@ Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel |

I B3
Sourcery G++ for ARM EABI Wizard

Installamawhere will guide you thraugh the installation of Sourcery
G++ for ARM EABI.

Itis strangly recommended that you quit all programs befare
cantinuing with this installation.

Click the 'Next' huttan to proceed to the next screen. Ifyou want to
change something an a previous screen, click the ‘Previous' buttan.

You may cancel this installation at any time by clicking the 'Cancel’
hutton.

Erevious |

Running the Installer.

You may want to change the install directory pathname and customize the shortcut installation.

2 Sourcery G++ for ARM EABI

& wielcome!

& Important Infarmation

& Choose Install Set

& Choose Install Folder
@ Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel |

The graphical installer guides you through the steps to
install Sourcery G++ Lite.

& E3
Choose Install Folder
Where Would You Like to Install?
IC:'l,Program Files\CodeSourceryl Sourcery G++ I
Restore Default Folder | Choose...
Frevious | INext |

Choose I nstall Folder.

Select the pathname to your install directory.

Installation and Configuration

2 Sourcery G++ for ARM EABI

& wielcome!

& Important Infarmation

& Choose Install Set

& Choose Install Folder

@ Add to PATH?

& Choose Shorteut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

(& (onESouncea

M= B3
Choose Shortcut Folder

Where would you like to create product icons?

{~ In & new Program Group: ISourcery G++ For ARM EABL

{~ In an existing Program Group: IAccessories LI
" In the Start Menu

= On the Desktop

' In the Quick Launch Bar

.
¥ Other: IieSourcery'l,Sourcery G+ For ARM BB Choose... |

" Don't create icons

[~ Create Icons For Al Users

InstallAmpwhere by Macravision

Cancel |

Frevious |

Choose Shortcut Folder.

You can customize where the installer creates

shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

2 Sourcery G++ for ARM EABI

& wielcome!
& Important Infarmation
& Choose Install Set

I B3
Install Complete

fongratulations! Sourcery G++ For ARM EART
has been successfully installed to:

diicygwinthomesandralarmss3instal

& Choose Install Folder
@ Add to PATH?

& Choose Shorteut Folder
G Fre-Installation Summary
& Installing...

& Install Complete

Press "Done” to quit the installer,

(& (onESouncea

InstallAmpwhere by Macravision

Cancel |

Frevious |

You should see a screen similar to this after a successful
install.

Install Complete.
If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -1 console command-line option. For example:
> /path/to/package.exe -1 console
2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

Installation and Configuration

> /bin/sh _/path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-1 console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-4._4,

First, uncompress the package file:

> bunzip2 /path/to/package.tar._bz2

Next, create the directory in which you wish to install the package:
> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates

If you have already installed an earlier version of Sourcery G++ Lite for MIPS ELF on your system,
it is not necessary to uninstall it before using the installer to unpack a new version in the same location.
The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the MIPS ELF target all begin with mips-
sde-elf. This means that you can install Sourcery G++ for multiple target systems in the same directory
without conflicts.

2.6. Setting up the Environment

As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts
2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd . exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd . exe shell and running:
> mips-sde-elf-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 4.4-58.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hel 1o . c corresponds to the Windows path ¢ 2 \cygwin\
home\user\hello. c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

10

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH
If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-mips-sde-elf/man.

You can test that your PATH is set up correctly by running the following command:
> mips-sde-elf-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 4.4-58.

2.7. Uninstalling Sourcery G++ Lite

The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

For Windows hosts other than Microsoft Windows Vista, select Start, then Control Panel.
Select Add or Remove Programs. Scroll down and click on Sourcery G++ for MIPS
ELF. Select Change/Remove and follow the on-screen dialogs to uninstall Sourcery G++ Lite.

On Microsoft Windows Vista hosts, select Start, then Settings and finally Control Panel.
Select the Uninstall a program task. Scroll down and double click on Sourcery G++
for MIPS ELF. Follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory withthe -1 console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

11

Installation and Configuration

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. The mi ps-sde-el ¥ directory located in the install directory will
be removed entirely by the uninstaller. Please back up any changes you have made to this directory,
such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++
Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -1 console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a . tar .bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Chapter 3
Sourcery G++ Lite for MIPS ELF

This chapter contains information about features of Sourcery G++ Lite that are specific to
MIPS ELF targets. You should read this chapter to learn how to best use Sourcery G++
Lite on your target system.

13

Sourcery G++ Lite for MIPS ELF

3.1. Included Components and Features

This section briefly lists the important components and features included in Sourcery G++ Lite for
MIPS ELF, and tells you where you may find further information about these features.

Component ‘Version ‘Notes

GNU programming tools

GNU Compiler Collection 44.1 Separate manual included.

GNU Binary Utilities 2.19.51 Includes assembler, linker, and other utilities.
Separate manuals included.

Debugging support and simulators

GNU Debugger 6.8.50 Separate manual included.

GDB Simulator N/A See Section 4.3, “Running Applications in the
Simulator”.

MDI Debugging Support N/A Included with GDB. See Section 4.4.3, “Connect-
ing with MDI”.

Target libraries

CodeSourcery Common Startup|4.4-58 See Chapter 5, “CS3™: The CodeSourcery

Code Sequence Common Startup Code Sequence”.

Newlib C Library 1.17.0 Separate manuals included.

Other utilities

GNU Make N/A Build support on Windows hosts.

GNU Core Utilities N/A Build support on Windows hosts.

3.2. Library Configurations

Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Sourcery G++ Lite includes linker scripts as well as runtime libraries for each multilib. You can find
these files in multilib-specific subdirectories of the mi ps-sde-e 1 /1 b directory of your Sourcery
G++ install.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for MIPS ELF.

MIPS32revision 2 - Big-Endian, 032
Command-line option(s): default

Library subdirectory: V4

MIPS32 revision 2 - Little-Endian, 032
Command-line option(s): -EL

Library subdirectory: el/

14

Sourcery G++ Lite for MIPS ELF

MIPS32 revision 2 - Big-Endian, O32, mips16

Command-line option(s): -mipsl6

Library subdirectory: mipsl6/

MIPS32revision 2 - Big-Endian, 032, fp64

Command-line option(s): -mfp64

Library subdirectory: fp64/

MIPS32 revision 2 - Soft-Float, 032

Command-line option(s): -msoft-float

Library subdirectory: sof/

MIPS32 revision 2 - No-Float, 032

Command-line option(s): -mno-float

Library subdirectory: nof/

MIPS32revision 2 - Big-Endian, O32, mipsl6, fp64

Command-line option(s): -mipsl6 -mfp64

Library subdirectory: mipsl6/fp64/

MIPS32revision 2 - Big-Endian, 032, mipsl6, Soft-Float

Command-line option(s): -mipsl6é -msoft-float

Library subdirectory: mipsl6/sof/

MIPS32revision 2 - Big-Endian, 032, mipsl6, No-Float

Command-line option(s): -mipsl6 -mno-float

Library subdirectory: mipsl6/nof/

MIPS32revision 2 - Big-Endian, O32, mipsl6, code-readable=no

Command-line option(s): -mipsl6 -mcode-readable=no

Library subdirectory: mipsl6/spram/

MIPS32revision 2 - Big-Endian, O32, mipsl6, fp64, code-readable=no

Command-line option(s): -mipsl6é -mfp64 -mcode-readable=no

Library subdirectory: mipsl6/fp64/spram/

MIPS32revision 2 - Big-Endian, 032, mipsl6, Soft-Float, code-readable=no

Command-line option(s): -mipslé -msoft-float -mcode-readable=no

Library subdirectory: mipsl6/sof/spram/

MIPS32revision 2 - Big-Endian, 032, mipsl6, No-Float, code-readable=no

Command-line option(s): -mipsl6é -mno-float -mcode-readable=no

Library subdirectory: mipsl6/nof/spram/

15

Sourcery G++ Lite for MIPS ELF

MIPS32revision 2 - Little-Endian, 032, mipsl6

Command-line option(s):

-EL -mipsi16

Library subdirectory:

el/mipsl6/

MIPS32revision 2 - Little-Endian, 032, fp64

Command-line option(s):

-EL -mfp64

Library subdirectory:

el/fp64/

MIPS32 revision 2 - Little-Endian, 032, Soft-Float

Command-line option(s):

-EL -msoft-float

Library subdirectory:

el/sof/

MIPS32 revision 2 - Little-Endian, O32, No-Float

Command-line option(s):

-EL -mno-float

Library subdirectory:

el/nof/

MIPS32revision 2 - Little-Endian, 032, mipsl6, fp64

Command-line option(s):

-EL -mips1l6 -mfp64

Library subdirectory:

el/mipsl6/fp64/

MIPS32revision 2 - Little-Endian, 032, mipsl6, Soft-Float

Command-line option(s):

-EL -mips1l6 -msoft-float

Library subdirectory:

el/mipsl6/sof/

MIPS32revision 2 - Little-Endian, 032, mipsl6, No-Float

Command-line option(s):

-EL -mips1l6 -mno-float

Library subdirectory:

el/mipsl6/nof/

MIPS32revision 2 - Little-Endian, 032, mipsl6, code-readable=no

Command-line option(s):

-EL -mipsl6 -mcode-readable=no

Library subdirectory:

el/mipsl6/spram/

MIPS32revision 2 - Little-Endian, 032, mipsl6, fp64, code-readable=no

Command-line option(s):

-EL -mipsl6 -mfp64 -mcode-readable=no

Library subdirectory:

el/mipsl6/fp64/spram/

MIPS32revision 2 - Little-Endian, 032, mipsl6, Soft-Float, code-readable=no

Command-line option(s):

-EL -mipsl6 -msoft-float -mcode-readable=no

Library subdirectory:

el/mipsl6/sof/spram/

MIPS32revision 2 - Little-Endian, 032, mipsl6, No-Float, code-readable=no

Command-line option(s):

-EL -mipsl6 -mno-float -mcode-readable=no

Library subdirectory:

el/mipsl6/nof/spram/

16

Sourcery G++ Lite for MIPS ELF

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> mips-sde-elf-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. CS3 Support

Sourcery G++ Lite includes CS3 linker scripts and initialization code to support three different classes
of target configurations:

 Simulator targets, such as MIPSsim, running under control of the debugger.
» Malta hardware targets running in a bare-metal configuration under control of the debugger.
» Malta hardware targets running under control of the YAMON boot monitor.

You must use the appropriate linker script to match your target, since the memory layouts and startup
code sequences are different in each case. Refer to Chapter 5, “CS3™: The CodeSourcery Common
Startup Code Sequence” for details on the supported boards for this version of Sourcery G++ Lite.

For simulator and bare-metal targets, CS3 provides semihosted 1/0 via the debugger console on the
host. For instructions on loading and running code on the target from command-line GDB, see Sec-
tion 4.4, “Running Applications from GDB”.

3.4. Using Sourcery G++ with MIPS Malta
Boards

The provided CS3 linker scripts for MIPS Malta boards (both bare-metal and YAMON profiles) as-
sume 128MB of RAM is available on the target. If your target board has less memory, you must
adjust the memory layout used by the linker by specifying a custom linker script.

Find the linker script for your selected profile, such as mips-sde-elf/1ib/
malta-ram-hosted. Id, in your Sourcery G++ Lite installation and copy it to your project
working directory. In your local copy, find the MEMORY directive and edit the LENGTH expression
to match the amount of memory available on your board. Then, use the full absolute pathname of
your modified linker script with the =T command-line option when linking your program.

17

Sourcery G++ Lite for MIPS ELF

3.5. Using Sourcery G++ with YAMON

For YAMON targets, CS3 provides basic 1/0O services via the YAMON console. This section briefly
covers how to load and run programs using YAMON.

To prepare an application to run from YAMON, you must first convert the executable file to SREC
format. You can do this from the command line on your host system using the objcopy utility provided
with Sourcery G++ Lite.

> mips-sde-elf-objcopy -0 srec prog prog-srec

Next, use YAMON to load the SREC image file into RAM. For example, to load via TFTP, use a
command similar to:

YAMON> load tftp://host /pat h/prog.srec
Then, start the program from the YAMON prompt:
YAMON> go .

For more detailed information about YAMON usage and features, refer to the YAMON User's
Manual.

3.6. Profiling Support

Sourcery G++ Lite includes CS3 support for code profiling on MIPS ELF targets using gprof. To
enable profiling, compile your program with the —pg option. You must also build your program
with a hosted linker script.

You can run a program built with profiling from the debugger the same as you would any other
hosted application. While your program is running, profiling data is saved in buffers in the heap
memory area on the target. This may affect the amount of memory available to your application, and
it is also possible that the profiler itself may run out of memory. Profiling data is written to a file on
the host (gmon . out) only when your application exits. Since many embedded applications are
structured to run indefinitely rather than exit, you may need to add an explicit exit call in order to
collect profiling data.

For instructions on using the mips-sde-elf-gprof utility to process the collected gmon . out data,
refer to the GNU Profiler (gprof) manual included with Sourcery G++ Lite.

3.7. Using Flash Memory

Sourcery G++ Lite supports development and debugging of applications loaded into flash memory
on MIPS ELF targets. There are three steps involved:

1. You must use an appropriate linker script that identifies the ROM memory region on your target
board, and locates the program text within that region. Refer to Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Sequence” for information about the boards supported by Sourcery
G++.

2. Next, load your program into the flash memory on your target board. You must use third-party
tools to program the flash memory.

18

Sourcery G++ Lite for MIPS ELF

3. Finally, when debugging a program in flash memory, GDB must be told about the ROM region
so that it knows where it must use hardware breakpoints to control program execution.

When using GDB from the command line, you can mark the flash memory as read-only by using
the command:

(gdb) mem start end ro
where st art and end define the address range of the read-only memory region.

Although GDB automatically attempts to use hardware breakpoints on code locations in the read-
only memory region, on many targets the number of available hardware breakpoints is very small.
Furthermore, GDB also uses hardware breakpoints internally to implement commands such as step,
next, and finish. Thus the number of breakpoints you can explicitly set in ROM may be fewer than
the number supported by the target system.

3.8. Additional Documentation

A document that provides additional details on using Sourcery G++ Lite for MIPS ELF is provided.
The document can be found at share/doc/sourceryg++-mips-sde-elf/pdf/MIPS_
TOOLCHAIN . pdf within your installation directory.

19

Chapter 4
Using Sourcery G++ from the

Command Line

This chapter demonstrates the use of Sourcery G++ Lite from the command line.

20

Using Sourcery G++ from the Command Line

4.1. Building an Application

This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is mips-sde-elf, as indicated
by the mips-sde-elf command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named main . c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
it (n == 0)
return 1;
return n * factorial (n - 1);

}

int main Q) {
int i;
int n;
for (i = 0; 1 < 10; ++i) {
n = factorial (i);
printf ('factorial(%d) = %d\n', 1, n);
}

return O;

}

Compile and link this program using the command:
> mips-sde-elf-gcc -o factorial main.c -T script

Sourcery G++ requires that you specify a linker script with the —T option to build applications for
bare-board targets. Linker errors like undefined reference to “read” are a symptom of
failing to use an appropriate linker script. Default linker scripts are provided in mips-sde-elf/
1 ib. Refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for inform-
ation about the boards and linker scripts supported by Sourcery G++ L.ite.

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace mips-sde-elf-gcc with mips-sde-elf-g++.)

4.2.Running Applications on the Target System

Consult your target board documentation for instructions on loading programs onto the target, and
running them.

4.3. Running Applications in the Simulator

Sourcery G++ Lite includes a simulator that you can use on the host system to run programs compiled
for the target system. Since you do not need target hardware, this is the easiest way to try out Sourcery
G++.

To use the simulator run:

21

Using Sourcery G++ from the Command Line

> mips-sde-elf-run factorial

You should see the expected output:

factorial(0) =1
factorial(1l) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial (9) = 362880

You can also use the simulator to execute target programs when debugging with GDB. See Section 4.4,
“Running Applications from GDB” for more information.

The simulator supports the MIPS32r2 instruction set, including the MIPS16e, MIPS DSP and DSP
Revision 2, SmartMIPS, and MIPS-3D ASEs. It can also emulate earlier variants of the MIPS archi-
tecture.

4.4. Running Applications from GDB

You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. You can also run and debug programs using the GDB simulator.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.4.1. Connecting to the GDB Simulator

GDB includes a simulator that allows you to debug MIPS ELF applications without target hardware.
To start and connect to the simulator from within GDB, use this command:

(gdb) target sim
4.4.2. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host :port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

4.4.3. Connecting with MDI

Sourcery G++ Lite for MIPS ELF supports debugging with third-party simulators and hardware debug
devices that implement the MDI (Microprocessor Debug Interface) API.

Before you can connect to a target using the MDI API, you must tell GDB which shared library or
DLL to load for your simulator or device, and set up parameters to select your MDI target. This can

22

Using Sourcery G++ from the Command Line

be done either by means of environment variables or GDB commands. For example, you may want
to put the GDB configuration commands in your .gdbinit file, which is loaded automatically
when you start GDB.

This section describes the basic MDI usage; refer to the documentation for your MDI simulator or
debug device for details specific to that target. Note, in particular, that some MDI targets may require
you to set up a configuration file and/or license in addition to the steps given here.

In order to tell GDB which MDI library to load, on Linux hosts you should add the directory containing
the shared library files to your LD_L IBRARY_PATH environment variable. On Windows hosts, add
the directory containing the DLLs to your PATH environment variable. Then, either set the environ-
ment variable GDBMD IL I B to the base name of the MDI library before starting GDB, or select the
library within GDB using the command:

(gdb) set mdi library nane

To verify that your shared library configuration is correct, you can query it from GDB for the devices
it supports:

(gdb) show mdi devices

Each device is identified by a target number and device number. You can select the values you want
to use with the following GDB commands:

(gdb) set mdi target target num
(gdb) set mdi device devi cenum

Alternatively, you can set the environment variables GDBMD I TARGET and GDBMD IDEV ICE.
At this point, you can establish a connection to the selected MDI device using:

(gdb) target mdi

Then you can load and run or attach to your program on the target.

4.4.4. Loading and Running Applications

Connecting to a bare-metal target or simulator from GDB does not cause your program to be loaded
into target memory. You must do this explicitly from GDB after you connect:

(gdb) load

Alternatively, you can use third-party tools to load your application into flash memory before starting
GDB.

To begin execution of your application, you should generally use the continue command:
(gdb) continue

However, you should use run instead of continue to start your program if you used target mdi or
target sim to connect:

(gdb) run

23

Chapter 5
CS3™: The CodeSourcery
Common Startup Code Sequence

CS3is CodeSourcery's low-level board support library. This chapter describes the organiz-
ation of the system startup code and tells you how you can customize it, such as by defining
your own interrupt handlers. This chapter also documents the boards supported by Sourcery
G++ Lite and the compiler and linker options you need to use with them.

24

CS3™: The CodeSourcery Common Startup Code Sequence

Many developers turn to the GNU toolchain for its cross-platform consistency: having a single system
support so many different processors and boards helps to limit risk and keep learning curves gentle.
Historically, however, the GNU toolchain has lacked a consistent set of conventions for processor-
and board-level initialization, language run-time setup, and interrupt and trap handler definition.

The CodeSourcery Common Startup Code Sequence (CS3) addresses this problem. For each supported
system, CS3 provides a set of linker scripts describing the system's memory map, and a board support
library providing generic reset, startup, and interrupt handlers. These scripts and libraries all follow
a standard set of conventions across a range of processors and boards.

5.1. Startup Sequence

CS3 divides the startup sequence into three phases:
* In the hard reset phase, we initialize the memory controller and set up the memory map.

* In the assembly initialization phase, we prepare the stack to run C code, and jump to the C initial-
ization function.

« In the C initialization phase, we initialize the data areas, run constructors for statically-allocated
objects, and call main.

The hard reset and assembly initialization phases are necessarily written in assembly language; at
reset, there may not yet be stack to hold compiler temporaries, or perhaps even any RAM accessible
to hold the stack. These phases do the minimum necessary to prepare the environment for running
simple C code. Then, the code for the final phase may be written in C; CS3 leaves as much as possible
to be done at this point.

The CodeSourcery board support library provides default code for all three phases. The hard reset
phase is implemented by board-specific code. The assembly initialization phase is implemented by
code specific to the processor family. The C initialization phase is implemented by generic code.

5.1.1. The Hard Reset Phase

This phase is responsible for initializing board-specific registers, such as memory base registers and
DRAM controllers, or scanning memory to check the available size. It is written in assembler and
ends with a jump to _start, which is where the assembly initialization phase begins.

The hard reset code is in a section named .cs3. reset. The section must define a symbol named
___cs3_reset_sys, where sys is a name for the board being initialized; for example, the reset
code for M5208EVB boards would be named _ cs3_reset_m5208evb. The linker script defines
the symbol _ cs3_reset to refer to this reset address. If you need to refer to the reset address
from generic code, you can use this non-specific __cs3_reset name.

Some simulators provide a supervisory operation to determine the amount of available memory. This
operation is performed in the hard reset phase. Thus for simulators, execution always begins at
___Cs3_reset_sys.

The CodeSourcery board support library provides reasonable default reset code, but you may provide
your own reset code by defining_ cs3_reset_sys inanobjectfile or library, ina .cs3.reset
section.

25

CS3™: The CodeSourcery Common Startup Code Sequence

5.1.2. The Assembly Initialization Phase

This phase is responsible for initializing the stack pointer and creating an initial stack frame. The
symbol _start marks the entry point of the assembly initialization code; this name lacksthe _ cs3
prefix because is the symbol traditionally used by debuggers and other integrated development en-
vironments for the address where program execution begins. The assembly initialization phase ends
withacall or jumpto__ cs3 start_c.

Simulators typically initialize the stack pointer and initial stack frame automatically on startup. CS3
can also support targets running a boot monitor that likewise initializes the stack before starting user
code. On these targets, CS3 does not perform the assembly initialization phase at all; instead, _start
is aliased to __cs3 reset_sys, so that execution always starts with the hard reset phase. The
hard reset phase then ends with a jump directlyto _ cs3_start_c.

On the other hand, on bare-board targets setting the stack pointer explicitly in the assembly initializ-
ation phase is required even if the processor itself initializes the stack pointer automatically on reset.
This is to support restarting programs from _start in the debugger.

The value of the symbol __ cs3_stack provides the initial value of the stack pointer. The Code-
Sourcery linker scripts provide a default value for this symbol, which you may override by defining
___cs3_stack yourself.

The initial stack frame is created for the use of ordinary C and C++ calling conventions. The stack
should be initialized so that backtraces stop cleanly at this point; this might entail zeroing a dynamic
link pointer, or providing hand-written DWARF call frame information.

Finally, we call the C function __cs3_start_c. This function never returns, and _start need
not be prepared to handle a return from it.

As with the hard reset code, the CodeSourcery board support library provides reasonable default
assembly initialization code. However, you may provide your own code by providing a definition
for _start, either in an object file or a library.

5.1.3.The C Initialization Phase

Finally, C code can be executed. The C startup function is declared as follows:
void _ cs3 start _c (void) _ attribute ((noreturn));
In this function we take the following steps:

* Initialize all .data-like sections by copying their contents.

* Clear all .bss-like sections.

» Run constructors for statically-allocated objects, recorded using whatever conventions are usual
for C++ on the target architecture.

CS3 reserves priorities from 0 to 100 for use by initialization code. You can handle tasks like en-
abling interrupts, initializing coprocessors, pointing control registers at interrupt vectors, and so
on by defining constructors with appropriate priorities.

» Call main as appropriate.

o Call exit, ifitis available.

26

CS3™: The CodeSourcery Common Startup Code Sequence

As with the hard reset and assembly initialization code, the CodeSourcery board support library
provides a reasonable definition for the _ cs3 start_c function. You may override this by
providing a definition for __cs3_start_c, either in an object file or in a library.

The CodeSourcery-provided definition of _ cs3 start_c can pass command-line arguments to
main using the normal C argc and argv mechanism if the board support package provides corres-
ponding definitions for __cs3_argcand __cs3_argv. For example:

int _ cs3 argc;
char **_ c¢s3 argv;

These variables should be initialized using a constructor function, whichisrunby ¢cs3_start
c after it initializes the data segment. Use the constructor attribute on the function definition:

__attribute_ ((constructor))

static void _ cs3_init_args (void) {
__cs3 argc = ...;
__cs3_argv = ...;

}

The constructor function may have an arbitrary name; __¢s3_init_args is used only for illus-
trative purposes here.

If definitions of __cs3_argc and __cs3_argv are not provided, then the default _ cs3_
start_c function invokes main with zero as the argc argument and a null pointer as argv.

5.2. Exit and Embedded Systems

A program running on an embedded system is usually designed never to exit — it runs until the
system is powered down. The C and C++ standards leave it unspecified as to whether exit is called
at program termination. If the program never exits, then there is no reason to include exit, facilities
to run functions registered with atexit, or global destructors. This code would never be run and
would therefore just waste space in the application.

The CS3 startup code, by itself, does not cause exit to be present in the application. It dynamically
checks whether exit is present, and only calls it if it is. If you require exit to be present, either
refer to it within your application, or add -WI , -u, exit to the linking command line.

Similarly, code to register global destructors is only invoked when atexit is already in the execut-
able; CS3, by itself, does not cause atexit to be present. If you require atexit, either refer to it
within your application, or add -WI , —u, atexit to the linking command line.

5.3. Memory Layout

The header file cs3 . h declares variables and types that describe the layout of memory on the system
to C code. The variables are defined by the CS3 linker script or in the board support library.

The following variables describe the regions of memory to be initialized at startup:

/* The number of elements in _ cs3 regions. */
const size t c¢s3 region_num;

/* An untyped object, aligned on an eight-byte boundary. */
typedef unsigned char _ cs3 byte align8

27

CS3™: The CodeSourcery Common Startup Code Sequence

__attribute__ ((aligned (8)));

struct _ cs3_region

{
/* Flags for this region. None defined yet. */

unsigned flags;

__cs3 byte _align8 *init; /* Region®s initial contents. */
__cs3 _byte _align8 *data; /* Region®s start address. */

/* These sizes are always a multiple of eight. */

size_t init_size; /* Size of initial data. */

size_t zero_size; /* Additional size to be zeroed. */
};
/* An array of memory regions. _ cs3 _regions[0] describes

the region holding -data and .bss. */
extern const struct _ cs3 region _ cs3_regions[];

The following variables describe the area of memory to be used for the dynamically-allocated heap:

/* The addresses of these objects are the start and end of
free space for the heap, typically following .data and .bss.
However, & c¢s3_heap_end may be zero, meaning that we must
determine the heap limit in some other way --- perhaps via a
supervisory operation on a simulator, or simply by treating
the stack pointer as the limit. */

extern _ cs3 byte align8 _ cs3 heap_start[];

extern _ cs3 byte align8 _ cs3 heap_end[];

/* The end of free space for the heap, or zero if we haven"t been
able to determine it. It usually points to _ cs3 heap_end,
but in some configurations, may be overridden by a supervisory
call in the reset code. */

extern void *__cs3 heap limit;

For each region named R, cs3. h declares the following variables:

/* The start of the region. */
extern unsigned char _ cs3 region_start R[]
__attribute ((aligned (8)));

/* The region®"s size, in bytes. */
extern const size t _ cs3 region_size R;

At the assembly level, the linker script also defines symbols with the same names and values.

If the region is initialized, then cs3.h also declares the following variables, corresponding to the
region's elementin __cs3_regions:

/* The data we initialize the region with. */
extern const unsigned char _ cs3 region_init R[]
__attribute _ ((aligned (8)));

/* The size of the initialized portion of the region. */

28

CS3™: The CodeSourcery Common Startup Code Sequence

extern const size_ t _ cs3 region_init_size R;

/* The size of the additional portion to be zeroed. */
extern const size_t _ cs3 region_zero_size R;

Any of these identifiers may actually be defined as preprocessor macros that expand to expressions
of the appropriate type and value.

Likethe struct __ cs3_region members, these regions are all aligned on eight-byte boundaries,
and their sizes are multiples of eight bytes.

CS3 linker scripts place the contents of sections named .cs3.region-head.R at the start of
each memory region. Note that CS3 itself may want to place items (like interrupt vector tables) at
these locations; if there is a conflict, CS3 raises an error at link time.

5.4. Interrupt Vectors and Handlers

CS3 provides standard handlers for interrupts, exceptions and traps, but also allows you to easily
define your own handlers as needed. In this section, we use the term interrupt as a generic term for
this entire class of events.

Different processors handle interrupts in various ways, but there are two general approaches:

» Some processors fetch an address from an array indexed by the interrupt number, and jump to that
address. We call these address vector processors; ColdFire systems are a typical example.

 Others multiply the interrupt number by some constant factor, add a base address, and jump directly
to that address. Here, the interrupt vector consists of blocks of code, so we call these code vector
processors; PowerPC systems are a typical example.

On address vector processors, the CS3 library provides an array of pointers to interrupt handlers
named __ cs3_interrupt_vector_f or moccupying a section named .cs3. interrupt_
vector, where f or midentifies the particular processor variant the vector is appropriate for. If the
processor supports more than one variety of interrupt vector (for example, a full-length form and a
shortened form), then f or midentifies the variety as well. Each entry in the vector holds a reference
to a symbol named __¢s3_isr_i nt, where i nt is the customary name of that interrupt on the
processor, or a number if there is no consistently used name. The library further provides a reasonable
default definition for each __ c¢s3_isr_i nt handler routine.

To override an individual handler, provide your own definition for the appropriate __ cs3_isr_
i nt symbol. The definition need not be placed in any particular object file section.

Interrupt handlers typically require special call/return and register usage conventions that are target-
specific and beyond the scope of this document. As an alternative to writing interrupt handlers in
assembly language, on some targets they may be written in C using the interrupt attribute. For
example, to override the _ cs3_isr_access_error handler, use the following definition:

void __ attribute ((interrupt)) _ cs3 isr_access _error (void)

{
}

To override the entire interrupt vector, you can define _ cs3_interrupt_vector_form
placing the definition in a section named .cs3. interrupt_vector. The linker script reports

... custom handler code ...

29

CS3™: The CodeSourcery Common Startup Code Sequence

an error if the .cs3.interrupt_vector section is empty, to ensure that the definition of
__cs3_interrupt_vector_f or moccupies the proper section.

You may define the vector in C with an array of pointers using the section attribute to place it in
the appropriate section. For example, to override the interrupt vector on M5208EVB boards, make
the following definition:

typedef void handler(void);
handler * _attribute ((section ('.cs3.interrupt _vector'™)))
__cs3_interrupt_vector_coldfire[] =

{--- 3
On code vector processors, we follow the same conventions, with the following exceptions:

* Inaddition to being named __cs3_1sr_i nt, each interrupt handler must also occupy a section
named .cs3. interrupt_i nt . Naturally, each handler must fit within a single interrupt vector
entry.

* Instead of providing a default definition for __cs3_interrupt_vector_f or min the library,
the linker script gathers the .cs3. interrupt_i nt sections together, in the proper order and
on the necessary address boundaries, and defines the __ ¢s3_interrupt_vector_form
symbol to refer to its start.

To override an individual handler on a code vector processor, you provide your own definition for
__cs3_isr_int, placed in an appropriate section. The linker script ensures that each
-cs3.interrupt_i nt section is non-empty, so that placing a handler in the wrong section elicits
an error at link time.

CS3 does not allow you to override the entire interrupt vector on code vector processors, because
the code vector must be constructed by the linker script, and thus cannot come from a library or object
file. However, the portion of the linker script that constructs the interrupt vector occupies its own
file, which other linker scripts can incorporate using the INCL UDE linker script command, making
it easier to replace the linker script entirely and still take advantage of CS3's other features.

Some processors, like the Innovasic fido, use more than one interrupt vector: the processor provides
several interrupt vector pointer registers, each used in different circumstances. Each register may
point to a different vector, or some or all may share vectors.

On these processors, CS3 provides only a single pre-constructed interrupt vector, but defines a sep-
arate symbol for each interrupt vector pointer register; all the symbols point to the pre-constructed
vector by default. The CS3 startup code initializes each register from the corresponding symbol. You
can provide your own vectors by defining the appropriate symbols.

For example, the fido processor has five contexts, each of which can use its own interrupt vector;
on this architecture, CS3 defines the standard __ cs3_interrupt_vector_fido symbol referring
to the pre-constructed vector, and then goes on to define per-context symbols __ ¢s3_interrupt_
vector_fido_ctx0,__cs3 interrupt_vector_fido_ctxl,andso on, all referring to
__cs3_interrupt_vector_Tfido. The CS3 startup code sets each context's vector register to
the value of the corresponding symbol. By default, all the contexts share an interrupt vector, but if
your code provides its own definition for __ ¢s3 _interrupt_vector_fido_ctxl, then the
startup code initializes context one's register to point to that vector instead.

This arrangement requires you to use a different approach to specify a handler for a secondary context
that differs from the corresponding handler in the primary context. For example, to handle division-

30

CS3™: The CodeSourcery Common Startup Code Sequence

by-zero exceptions in context 1 with the function ctx1_divide_by zero, you should write the
following:

typedef void (*handler_type) (void);
handler_type _ cs3 interrupt vector_ fido ctx1l[256];
extern handler_type _ cs3 interrupt vector_ Ffido[256];

__attribute_ ((interrupt))

void
ctxl _divide by zero (void)
{
/* Your code here. */
3
__attribute_ ((constructor))
void
initialize _vector _ctxl (void)
{

/* Initialize our custom vector from the
pre-constructed CS3 vector. */
memcpy (__cs3_interrupt_vector_ fido ctxil,
__cs3_interrupt_vector_ fido,
sizeof (__cs3 interrupt_vector_ fido));

/* Initialize custom interrupt handlers. */
___cs3_interrupt _vector fido ctx1[5] = ctxl divide by zero;

}

With this code in place, when a division-by-zero exception occurs in context 1, the processor calls
ctxl _divide by zero to handle it. Defining initialize vector_ctxl with the
constructor attribute arranges for CS3 to call it before calling your program's maiin function.

5.5. Linker Scripts

CS3 provides linker scripts for each supported board. Each board may be used in a number of different
configurations, and these are reflected in the linker script names. The linker scripts are named
boar d- profi |l e- host ed. ld, where boar d is the name of the board, pr of i | e describes the
memory arrangement used and - host ed indicates whether hosting or semihosting is provided.

Caution

Linker scripts are required to create executable programs for MIPS ELF targets. When in-
voking the Sourcery G++ linker from the command line, you must explicitly supply a linker
script using the - T option; otherwise a link error results.

5.5.1. Program and Data Placement

Many boards have both RAM and ROM (flash) memory devices. CS3 provides distinct linker scripts
to place the application either entirely in RAM, or in ROM where data is initialized during the C
initialization phase.

Some boards have very small amounts of RAM memory. If you use large library functions (such as
printfand mal loc), you may overflow the available memory. You may need to use the ROM-

31

CS3™: The CodeSourcery Common Startup Code Sequence

based linker scripts for such programs, so that the program itself is stored in ROM. You may be able
to reduce the total amount of memory used by your program by replacing portions of the Sourcery
G++ runtime library and/or startup code.

5.5.2. Hosting and Semihosting

CS3 is designed to support boards without an operating system. To allow functions like open and
wr i te to work without operating system support, a semihosting feature is supported, in conjunction
with the debugger.

With semihosting enabled, these system calls are translated into equivalent function calls on your
host system. You can only use these function calls while connected to the debugger; if you try to use
them when disconnected from the debugger, you will get a hardware exception.

Semihosting requires support from the remote GDB debugging stub or agent, as well as the debugger
itself. Semihosting is supported by the GDB Simulator included with Sourcery G++ Lite. You can
additionally use semihosting when connecting to the target using MDI. However, semihosting may
not be supported by debugging stubs provided by third parties. If you are using a debug device that
communicates with GDB using the GDB remote protocol, check the documentation for your device
to see whether semihosting is supported.

A good use of semihosting is to display debugging messages. For example, this program prints a
message on the standard error stream on the host:

#include <unistd.h>

int main () {
write (STDERR_FILENO, "Hello, world!\n*, 14);
return O;

}

The hosted CS3 linker scripts provide the semihosting support, and as such programs linked with
them may only be run with the debugger. The unhosted CS3 linker scripts provide stub versions of
the system calls, which return an appropriate error value in errno. If such a stub system call is re-
quired in the executable, the linker also produces a warning. Such a warning may indicate that you
have left debugging code active, and that your executable is larger than it might need to be.

Some targets supported by CS3 can run a boot monitor that provides console 1/O services and other
basic system calls. CS3 can also provide hosting via these facilities; where a boot monitor is supported,
this is noted in the board tables below. Unlike semihosting, hosting via the boot monitor can be used
when running programs outside of the debugger.

5.5.3. Choosing a Linker Script
When using Sourcery G++ from the command line, you must add -T scri pt to your linking

command, where scri pt isthe appropriate linker script. For example, to target M5208EVB boards,
you could link with -T m5208evb-ram.

5.6. Supported Boards for MIPS ELF

CS3 provides support for the following boards on MIPS ELF targets.

32

CS3™: The CodeSourcery Common Startup Code Sequence

MIPS Malta

Processor name: unspecified

Processor options: [none

Memory regions: ram

Linker scripts: RAM Hosted malta-ram-hosted. Id
RAM Unhosted malta-ram.1d
YAMON malta-yamon. 1d

MIPSsim

Processor name: unspecified

Processor options: |none

Memory regions: ram

Linker scripts: Hosted mipssim-hosted. 1d
Unhosted mipssim. Id

5.7. Interrupt Vector Tables

5.8. Regions and Memory Sections

The following regions are defined for MIPS ELF.

Region|Contents

ram |.dataand .bss sections. In ram-based profiles, also contains . text and other program-
like sections.

Note that not all regions are provided in every linker script or profile; see the documentation of the
individual linker scripts in Section 5.6, “Supported Boards for MIPS ELF”, above.

Regions documented as "Memory regions" correspond to similarly-named program sections. For
example, the linker script assigns the . ram section to the ram region. You can explicitly locate data
or code in these sections using section attributes in your source C or C++ code. Section attributes
are especially useful on code compiled for boards that include special memory banks, such as a fast
on-chip cache memory, in addition to the default ram and/or rom regions. CS3 arranges for addi-
tional data-like sections to be initialized in the same way as the default . data section.

As an example to illustrate the attribute syntax, you can put a variable v in the . ram section using:
int v _ attribute__ ((section (".ram)));

To declare a function F in this section, use:

int ¥ (void) _ attribute ((section (".ram"))) {...}

For more information about attribute syntax, see the GCC manual.

Regions documented as "Other regions" do not have a corresponding program section. Typically,
these regions correspond to memory-mapped control and 1/O registers that cannot be used for general
data or program storage. If you need to manipulate data in these regions, you can use the CS3 memory
layout facilities declared in cs3.h, as described in Section 5.3, “Memory Layout”.

33

CS3™: The CodeSourcery Common Startup Code Sequence

Memory maps for boards supported by Sourcery G++ Lite for MIPS ELF are documented in the
linker scripts in the mips—-sde-el /1 1b/ subdirectory of your Sourcery G++ installation directory.

34

Chapter 6
Next Steps with Sourcery G++

This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

35

Next Steps with Sourcery G++

6.1. Sourcery G++ Subscriptions

CodeSourcery offers two levels of Sourcery G++ subscriptions. Professional Edition subscriptions
include unlimited support, with no per-incident fees. CodeSourcery's support is provided by the same
engineers who build Sourcery G++, and covers questions about installing and using Sourcery G++,
the C and C++ programming languages, and all other topics relating to Sourcery G++. CodeSourcery
provides updated versions of Sourcery G++ on demand to resolve critical problems reported by
Professional Edition subscribers. Personal Edition subscriptions do not include support, but do include
access to updates as long as the subscription remains active.

Subscription editions of Sourcery G++ also include many additional features not included in the free
Lite editions:

Sourcery G++ IDE. The Sourcery G++ IDE, based on Eclipse, provides a fully visual envir-
onment for developing applications, including an automated project builder, syntax-highlighting
editor, and a graphical debugging interface. The debugger provides features especially useful to
embedded systems programmers, including the ability to step through code at both the source and
assembly level, view registers, and examine stack traces. CodeSourcery's enhancements to Eclipse
include improved support for hardware debugging via JTAG or ICE units and complete integration
with the rest of Sourcery G++.

Debug Sprites. Sourcery G++ Debug Sprites provide hardware debugging support using JTAG
and ICE devices. On some systems, Sourcery G++ Sprites can automatically program flash memory
and display control registers. Debug Sprites included in Lite editions of Sourcery G++ include
only a subset of the functionality of the Sprites in the subscription editions.

CS3. CS3 provides a uniform, cross-platform approach to board initialization and interrupt
handling on bare-metal ELF and EABI platforms. Subscription versions of Sourcery G++ include
CS3 support for an expanded set of boards. In addition, the Sourcery G++ Board Builder allows
you to extend the power of CS3 to cover custom board definitions. The Board Builder is fully in-
tegrated with the Sourcery G++ IDE and Debug Sprites.

CodeSourcery C Library. Subscription versions of Sourcery G++ for bare-metal targets include
the CodeSourcery C Library, a proprietary library implementation that is optimized to be smaller
and faster than the Newlib C library included with Lite editions of Sourcery G++.

QEMU Instruction Set Simulator. The QEMU instruction set simulator can be used to run
— and debug — programs even without target hardware. Most bare-metal configurations of
Sourcery G++ include QEMU and linker scripts targeting the simulator. Configurations of Sourcery
G++ for GNU/Linux targets include a user-space QEMU emulator that runs on Linux hosts.

Sysroot Utilities. Subscription editions of Sourcery G++ include a set of sysroot utilities for
GNU/Linux targets. These utilities simplify use of the Sourcery G++ dynamic linker and shared
libraries on the target and also support remote debugging with gdbserver.

GNU/Linux Prelinker. For select GNU/Linux target systems, Sourcery G++ includes the
GNU/Linux prelinker. The prelinker is a postprocessor for GNU/Linux applications which can
dramatically reduce application launch time. CodeSourcery has modified the prelinker to operate
on non-GNU/Linux host systems, including Microsoft Windows.

Library Reduction Utility. Sourcery G++ also includes a Library Reduction Utility for
GNU/Linux targets. This utility allows the GNU C Library to be relinked to include only those
functions used by a given collection of binaries.

36

Next Steps with Sourcery G++

« Additional Libraries. For some platforms, additional run-time libraries optimized for particular
CPUs are available. Pre-built binary versions of the libraries with debug information are also
available to subscribers.

» Additional Documentation. Subscription customers receive expanded access to the Sourcery
G++ Knowledge Base, covering many more tips, howtos, and application notes to help you make
the best use of Sourcery G++.

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portall. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

6.2. Sourcery G++ Knowledge Base

The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal®.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

6.3. Manuals for GNU Toolchain Components

Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-mips-sde-elf/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-mips-sde-elf/man/manl
Then you can invoke man as:
> man ./mips-sde-elf-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

! https://support.codesourcery.com/GNUToolchain/
2 https://support.codesourcery.com/GNUToolchain/

37

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Next Steps with Sourcery G++

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a ——hellp option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

38

Appendix A
Sourcery G++ Lite Release Notes

This appendix contains information about changes in this release of Sourcery G++ Lite for
MIPS ELF. You should read through these notes to learn about new features and bug fixes.

39

Sourcery G++ Lite Release Notes

A.l.Changes in Sourcery G++ Lite for MIPS ELF

This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 4.4-58

GDB finish internal error. A bug has been fixed that caused a GDB internal error when using
the finish command. The bug occurred when debugging optimized code.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

Argumentstonmai n. A bug in CS3 YAMON support has been fixed that formerly caused com-
mand-line arguments provided on program startup to be ignored. In YAMON profiles, the arguments
are now correctly passed to main viaar gc and ar gv.

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

GDB internal warning fix. A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

@ LEfix. A bug has been fixed in the processing of @FI LE command-line options by GCC,
GDB, and other tools. The bug caused any options in FI LE following a blank line to be ignored.

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

New header file. The header file mips/m32cache . h has been added to provide declarations
for MIPS32 cache management functions. For more information, refer to the MIPS® Toolchain
Specifics document.

Bug fix for read. A bug in CS3's console 1/0 support for YAMON has been fixed. The bug
caused read to return immediately rather than waiting for input to become available.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has been
fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

Startup codedebugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

MIPS32 TLB support. Functions for initialization and maintenance of the CPU's memory
management Translation Lookaside Buffer (TLB) have been added to CS3. For more information
about TLB support on MIPS ELF targets, refer to the MIPS® Toolchain Specifics document.

Debugging programsbuilt by Green Hillscompilers. GDB has been extended to accommodate
non-standard debug information produced by some Green Hills toolchains.

40

Sourcery G++ Lite Release Notes

Linker script fixes. A bug in CS3 linker scripts for YAMON and simulator profiles has been
fixed. The bug resulted in data memory being too small, which sometimes caused the stack to be
overwritten during initialization, or reduced space for mal loc to allocate.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.2. Changes in Sourcery G++ Lite 4.4-25

Remote debugging hardware watchpoint bug fix. A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

Binutilsupdate. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Destructor function bug fix. A bug in CS3 has been fixed that caused functions with the
destructor attribute not to be run on program termination.

Support for MIPS 1004K cores. Sourcery G++ now includes basic compiler and assembler
support for MIPS 1004K cores. Use the -march=1004kc (integer cores), -march=1004k¥f2__
1 (half-speed FPU), -march=1004kf1_1 (full-speed FPU), or -march=1004k¥ (alias for
1004kf2_1) command-line options.

Maltaboard support. The Malta 24Kc board definition has been removed from CS3. This board
definition was made obsolete in a previous release by the addition of a new generic Malta board
definition that is not restricted to 24Kc processors. You should use this generic Malta board definition
in place of the deleted 24Kc-specific one. For example, if you were formerly using the
malta-24kc-yamon. Id linker script, you should now use malta-yamon.ld. Refer to
Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for a full listing of supported
boards and provided linker scripts in this version of Sourcery G++ Lite.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Stack unwinding termination bug fix. A bug has been fixed that caused GDB not to detect the
outermost frame correctly while doing stack unwinding. The bug sometimes caused the debugger
to go into an infinite loop, or other unpredictable behavior.

-fremove-| ocal - st ati cs optimization. The -fremove-local-statics optimization
is now enabled by default at —-02 and higher optimization levels.

Elimination of spuriouswarningsabout NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Profiling support. Profiling is now supported for MIPS ELF targets. For more information on
profiling with gprof, please see Section 3.6, “Profiling Support”.

41

Sourcery G++ Lite Release Notes

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8];).

Function attributesto support interrupt handling. ~ Support for the interrupt attribute has
been implemented. use_debug_exception, keep_interrupts_masked, and use_
shadow_register_set have also been implemented. These are attributes which can be used to
modify the behavior of the interrupt handler. For more information on how to use these attributes,
please refer to the GCC manual.

GCCversion4.4.1. Sourcery G++ Lite for MIPS ELF is now based on GCC version 4.4.1. For
more information about changes from GCC version 4.3 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.4/changes.html.

Linker map address sorting. The map generated by the linker —Map option now lists symbols
sorted by address.

Floating-point register initialization for YAMON. A bug that caused the floating-point registers
to be initialized in the incorrect mode has been fixed. The reset code for YAMON applications now
initializes the floating-point register mode to conform to the compilation mode of the application.

A.1.3. Changes in Sourcery G++ Lite 4.3-221

No significant changes. There are no significant changes for MIPS ELF in this release.

A.1.4. Changes in Sourcery G++ Lite 4.3-219

Malta board support memory map. Other recent changes to Sourcery G++ have required
changing CS3's memory map for MIPS Malta boards to reserve an area of low memory for interrupt
vectors. If you are using a CS3-provided Malta linker script for your program, you will pick up the
changes automatically. If you are using a copied or custom linker script, you may need to adjust it
for this change.

MIPSsim board support. CS3 now includes a board definition intended specifically for use with
MIPSsim targets. If you were previously using a Malta linker script to build a program intended to
run on MIPSsim, you must change to use the new MIPSsim linker script instead. When invoking
the linker from the command line, use the -T mipssim-hosted. Id option to select the new
linker script. Using the new MIPSsim-specific linker script for MIPSsim targets is now necessary
because other recent changes to Sourcery G++ have required changes to the memory map used by
CS3 that are incompatible between MIPSsim and Malta hardware targets.

A.1.5. Changes in Sourcery G++ Lite 4.3-199

MIPS Malta board support. Support for a generic Malta board has been added to CS3. This is
similar to the existing Malta 24Kc board support, but is not specific to a particular processor, to reflect
the fact that these boards can be configured with a number of different processors. If you were pre-
viously using the Malta 24Kc CS3 board support with a processor other than the 24Kc, you should
switch to using the new generic Malta board instead. Refer to Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence” for more information about CS3 support for these boards.

Incorrect linker diagnosticremoved. The linker has been corrected to not emit an error message
when the load address of an output section with no contents overlaps an output section with contents.
This can occur in linker scripts that use MEMORY regions and AT> to place initialized contents into
ROM.

42

Sourcery G++ Lite Release Notes

GDB backwardscompatibility fix. A bug has been fixed that caused GDB to crash when loading
symbols from binaries built by very old versions of GCC.

Overloaded function resolution. The C++ compiler now correctly diagnoses an error when the
second operand of a comma expression is an unresolved set of overloaded functions. Previously, it
incorrectly used the context of the comma expression to resolve the function.

Pointer-to-member functions. A bug has been fixed that caused the C++ compiler to crash when
compiling a pointer-to-member function reference without an explicit & operator. This syntax is al-
lowed only when the —-fms-extensions command-line option is used.

New assembler option: - nf i x- 24k. The assembler now accepts the -mFix-24k command-
line option. The use of this option causes the assembler to work around hardware errata in the eret
and deret instructions on 24K and 24KE cores.

A.1.6. Changes in Sourcery G++ Lite 4.3-152

Reduced compilationtime. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Linker script load addressprocessing. A bug in the linker has been fixed affecting linker scripts
using AT>region to set the load address. This now follows the documented behavior of maintaining
the virtual address to load address difference in output section statements. Refer to the "Output
Section LMA" section of the linker manual for details of how to control the load address.

Hardware floating point emulation library. The hardware floating point emulation support
which was formerly included with the SDE library is now available as part of CS3. This library
provides trap handlers for unsupported floating-point instructions, which invoke the corresponding
soft-float library routines. To use the library in your code, compile with -mhard-float and link
with —-1cs3-mips-cpl -lcs3-mips-fpemu -Wl,--defsym, cs3 mips_Ffloat_
type=2 . For more information about floating-point support on MIPS ELF targets, refer to the
MIPS® Toolchain Specifics document.

mips-sde-elf-objcopy bug fix. A bug has been fixed that caused mips-sde-elf-objcopy to issue
an error when generating output in the Intel HEX format and using --change-section-Ima
to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

Corruption of block-scopevariables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

43

Sourcery G++ Lite Release Notes

A.1.7. Changes in Sourcery G++ Lite 4.3-147

Optimized math routines. The Newlib implementations of rint, drem, sqrtf and sqrt
have been replaced with the versions of these functions that were formerly included with the SDE
math library, and are optimized specifically for MIPS targets.

mips-sde-elf-objdump bugfix. A bug has been fixed that caused mips-sde-elf-objdump to enter
an infinite loop.

Incorrect code when using-fal i gn-1abels. A bug that caused the compiler to generate
incorrect code for switch statements when the —fal ign-1abel's option is used has been fixed.

Debug section placement. A linker script bug in CS3 has been fixed that caused .debug__
ranges debug sections to be misplaced.

MDI semihosting. A bug in MDI semihosting that could result in a crash when making a system
call (such as read or write) has been fixed.

Interrupting thetarget from the debugger. GDB has been improved to be more responsive to
attempts to interrupt the target (as by a Ctrl+C when using GDB from the command line) during
execution of programs using semihosting.

Loop optimization improvements. A new option, -fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

Optimized string and memory functions. The Newlib implementations of memcpy, memcmp,
bzero, strcmp, strcpy, strlen and memset have been replaced with the versions of these
functions that were formerly included with the SDE C library, and are optimized specifically for
MIPS targets.

Remote debugging connection auto-retry. The target remote command within GDB now uses
a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding race
conditions when the remote GDB stub or GDB server is launched simultaneously with GDB. The
auto-retry behavior is enabled by default; refer to the GDB manual for details.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can"t do that without a process to debug. when debugging a core dump file.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

A.1.8. Changes in Sourcery G++ Lite 4.3-113

GCCversion4.3.3. Sourcery G++ Lite for MIPS ELF is now based on GCC version 4.3.3. This
is a bug fix update to GCC. For more information about changes from GCC version 4.3.2 that was
included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes._html.

Argumentstormai n. A bug in CS3 hosting support has been fixed that formerly caused command-
line arguments provided on program startup to be ignored. In hosted environments, the arguments
are now correctly passed to main viaar gc and ar gv.

44

Sourcery G++ Lite Release Notes

Internal compiler error with - O3 or - f predi cti ve- commoni ng. A bug has been fixed
that caused internal compiler errors when compiling some code with -03 or
-fpredictive-commoning.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

Out-of-rangebranches. A bug has been fixed that caused the compiler to emit incorrect branch
code in some very large functions when generating position-independent code (-fpic) for 032
(-mabi=32) or 064 (-mabi=064) ABIs.

Newlib update. The Newlib package has been updated to version 1.17.0, with additions from the
community CVS trunk as of 2009-02-24. This update provides new C99 wide-character functions;
POSIX regex functions; string-function performance improvements; an improved sprintfimple-
mentation that no longer requires 1/O functions like _open, _write, and _close; and other bug
fixes and improvements. For more information, refer to the Newlib C Library and Math Library
manuals, and to the Newlib web site at http://sourceware.org/newlib/.

Installer failsduringupgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Compile-time error for some - mar ch options. A bug has been fixed that caused the error
message: mips-sde-elf-gcc: switch "|march=octeon® does not start with
"-" to be reported. The bug affected programs compiled with the options —-march=mips64,
-march=5k, -march=20k, -march=sb1l and -march=r71000.

Internal compiler errorswhen optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Temporary fileson Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPD IR variables were set to
a suitable directory.

Binutilsupdate. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on MIPS ELF targets.
This includes processors for which Sourcery G++ Lite does not include appropriate run-time libraries.
These changes are intended to simplify processor and board selection. For the full list of boards
supported by CS3, refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

45

Sourcery G++ Lite Release Notes

Internal compiler error with - f r enove-1 ocal - stati cs. Aninternal compiler error that
occurred when using the —fremove-local -statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

A.1.9. Changes in Sourcery G++ Lite 4.3-81

C++ named operatorsbug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eqand xor_eq
were used in contexts where the preprocessor converts their names to strings.

GDB target extended-remoteerror. A bug in GDB has been fixed that caused tar get extended-
remoteto report Remote Ffailure reply: EOL if no remote program was running.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "nane"
outside of ELF segments for such binaries; the warning has now been fixed.

A.1.10. Changes in Sourcery G++ Lite 4.3-59

Setting breakpointson Windows. A bug in GDB on Microsoft Windows hosts has been fixed.
The bug caused setting breakpoints on a source line by using the file's full path to fail with No
source fTile named fil enane.

Handling of out-of-range values by strtof . The strtof function now sets errno to
ERANGE when the input is not representable as a Float, as required by the 1SO C standard.

Printing casted valuesin GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the —a option) on Windows hosts has been fixed.

DSP support. The compiler now automatically enables support for the DSP ASE when the
—-march option is used to specify a core in the 24KE, 34K, or 74K families. It is no longer necessary
to provide the —-mdsp option explicitly.

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, the new
find command to search memory, the new /m (mixed source and assembly) option to the disassemble
command, and the new macro define command to define C preprocessor macros interactively.

PIE linking fix. A bug in the GCC -fpie and -fPIE options has been fixed. The bug caused
linker errors referring to R_MIPS_HI16.

Binutils support for DWARF Version 3. The addr 2line command now supports binaries con-
taining DWARF 3 debugging information. The Id command can display error messages with source
locations for input files containing DWARF 3 debugging information.

GDB support for YAMON. GDB now supports debugging via the YAMON boot loader GDB
stub. Consult YAMON documentation for details on enabling the GDB stub.

46

Sourcery G++ Lite Release Notes

GDB Support for MIPSsim on Windows. A bug in the GDB support for MIPSsim on Microsoft
Windows hosts has been fixed. The bug caused the target mdi command to fail with the error
Cannot find MIPSsim config file template: mipssim.cfg.

CodeSourcery Common Startup Code Sequence. Support for CS3, CodeSourcery's unified
startup scheme, has been added to this release. CS3 replaces the MIPS-provided MDI startup code
and linker scripts included in previous releases. Refer to Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence” for more information about CS3, including details about the boards
and linker scripts supported by this release. Note that the Malta board configuration is usable by
MIPSsim and the included GDB simulator as well as actual Malta hardware targets.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

FPU defaults. The -fFfast-math option now causes subnormal numbers to be immediately
flushed to zero. It also sets the rounding mode to round-to-nearest.

Connecting to the target using a pipe. A bug in GDB's target remote | pr ogr amcommand
has been fixed. When launching the specified pr ogr amfailed, the bug caused GDB to crash, hang,
or give a message Error: No Error.

Output filesremoved on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

Placing bss-likeregionsin load regions. The linker no longer issues an incorrect error message
when a bss-like section is placed at specific load region. The linker formerly incorrectly considered
the section as taking up space in the load region.

-mnar n- f ramesi ze=si ze option. GCC has a new command-line option,
-mwarn-framesize=si ze, which causes warnings if any function's stack frame exceeds the
given si ze. This option is useful when generating code for environments with limited or absent
stack, e.g., BIOS.

Newlib manuals. The documentation packaged with Sourcery G++ Lite now includes the
Newlib C Library and Math Library manuals.

GCCversion 4.3.2. Sourcery G++ Lite for MIPS ELF is now based on GCC version 4.3.2. For
more information about changes from GCC version 4.2 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.3/changes.html.

SpuriousGDB error messagefixed. Aspurious Current thread went away!? message
is no longer generated when using GDB to debug programs running on cores that do not support
hardware multi-threading. This problem was specific to the MDI target support in GDB.

Unnecessary section removed. A linker bug that caused an unnecessary . rel .dyn section to
be placed in the executable has been fixed.

Linker bugfix for - - gc- secti ons. Alinker bug that caused certain linker-generated sections
to be incorrectly omitted from the executable when the —-—gc-sections option is used has been
fixed.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

47

Sourcery G++ Lite Release Notes

Persistent remote server connections. A GDB bug has been fixed that caused the target exten-
ded-remotecommand to fail to tell the remote server to make the connection persistent across program
invocations.

A.1.11. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for MIPS ELF, please refer
to the Getting Started guide packaged with those releases.

48

Appendix B
Sourcery G++ Lite Licenses

Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary. This appendix
explains what licenses apply to your use of Sourcery G++ Lite. You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

49

Sourcery G++ Lite Licenses

B.1. Licenses for Sourcery G++ Lite Compon-
ents

The table below lists the major components of Sourcery G++ Lite for MIPS ELF and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

Component License

GNU Compiler Collection GNU General Public License 3.0 *

GNU Binary Utilities GNU General Public License 3.0 2

GNU Debugger GNU General Public License 3.0 3

CodeSourcery Common Startup Code |[CodeSourcery License

Sequence

Newlib C Library BSD License. For the text of the license and a complete
list of copyright holders, see COPYING.NEWLIB included
in the source package.

GNU Make GNU General Public License 2.0 *

GNU Core Utilities GNU General Public License 2.0 °

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.
Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-mips-sde-elf-examples subdirectory. These examples are not covered by
the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples are
provided by CodeSourcery as is with no warranty of any kind, including implied warranties of mer-
chantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

Lhitp:/Avww.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

50

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Sourcery G++ Lite Licenses

B.2. Sourcery G++™ Software License Agree-
ment

1.

Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and
CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
*“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

LicenseGrant to Proprietary Componentsof the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

“Free Software” or “Open Source” License to Certain Components of the Software.

This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

51

Sourcery G++ Lite Licenses

10.

11.

12.

13.

information for each “free software” or “open source” component is available in the relevant
source file.

CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™ the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
—--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA.-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

Limitation of Liability. = INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TOYOU ORANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

52

Sourcery G++ Lite Licenses

14.

15.

16.

17.

18.

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

LicenseeOutsideTheU.S. IfYou are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

53

Sourcery G++ Lite Licenses

19.

20.

21.

22.

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

54

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for MIPS ELF
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. CS3 Support
	3.4. Using Sourcery G++ with MIPS Malta Boards
	3.5. Using Sourcery G++ with YAMON
	3.6. Profiling Support
	3.7. Using Flash Memory
	3.8. Additional Documentation

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications in the Simulator
	4.4. Running Applications from GDB
	4.4.1. Connecting to the GDB Simulator
	4.4.2. Connecting to an External GDB Server
	4.4.3. Connecting with MDI
	4.4.4. Loading and Running Applications

	Chapter 5 CS3™: The CodeSourcery Common Startup Code Sequence
	5.1. Startup Sequence
	5.1.1. The Hard Reset Phase
	5.1.2. The Assembly Initialization Phase
	5.1.3. The C Initialization Phase

	5.2. Exit and Embedded Systems
	5.3. Memory Layout
	5.4. Interrupt Vectors and Handlers
	5.5. Linker Scripts
	5.5.1. Program and Data Placement
	5.5.2. Hosting and Semihosting
	5.5.3. Choosing a Linker Script

	5.6. Supported Boards for MIPS ELF
	5.7. Interrupt Vector Tables
	5.8. Regions and Memory Sections

	Chapter 6 Next Steps with Sourcery G++
	6.1. Sourcery G++ Subscriptions
	6.2. Sourcery G++ Knowledge Base
	6.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for MIPS ELF
	A.1.1. Changes in Sourcery G++ Lite 4.4-58
	A.1.2. Changes in Sourcery G++ Lite 4.4-25
	A.1.3. Changes in Sourcery G++ Lite 4.3-221
	A.1.4. Changes in Sourcery G++ Lite 4.3-219
	A.1.5. Changes in Sourcery G++ Lite 4.3-199
	A.1.6. Changes in Sourcery G++ Lite 4.3-152
	A.1.7. Changes in Sourcery G++ Lite 4.3-147
	A.1.8. Changes in Sourcery G++ Lite 4.3-113
	A.1.9. Changes in Sourcery G++ Lite 4.3-81
	A.1.10. Changes in Sourcery G++ Lite 4.3-59
	A.1.11. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement

