
Sourcery G++ Lite

MIPS ELF

Sourcery G++ Lite 4.4-226

Getting Started

Sourcery G++ Lite: MIPS ELF: Sourcery G++ Lite 4.4-226:
Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized and validated version of the GNU Toolchain. Sourcery G++ Lite includes everything
you need for application development, including C and C++ compilers, assemblers, linkers, and
libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents
Preface .. v

1. Intended Audience ... vi
2. Organization ... vi
3. Typographical Conventions .. vii

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Configuring Sourcery G++ Lite for the Target System ... 2
1.3. Building Your Program ... 2
1.4. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 4
2.1. Terminology ... 5
2.2. System Requirements ... 5
2.3. Downloading an Installer ... 6
2.4. Installing Sourcery G++ Lite .. 6
2.5. Installing Sourcery G++ Lite Updates .. 9
2.6. Setting up the Environment .. 9
2.7. Uninstalling Sourcery G++ Lite .. 11

3. Sourcery G++ Lite for MIPS ELF .. 13
3.1. Included Components and Features .. 14
3.2. Library Configurations .. 14
3.3. CS3 Support .. 17
3.4. Using Sourcery G++ with MIPS Boards ... 18
3.5. Using Sourcery G++ with YAMON ... 18
3.6. Profiling Support ... 19
3.7. Using Flash Memory .. 19
3.8. Additional Documentation ... 20

4. Using Sourcery G++ from the Command Line ... 21
4.1. Building an Application ... 22
4.2. Running Applications on the Target System ... 22
4.3. Running Applications in the Simulator ... 22
4.4. Running Applications from GDB .. 23

5. CS3™: The CodeSourcery Common Startup Code Sequence .. 25
5.1. Linker Scripts .. 26
5.2. Program Startup and Termination .. 28
5.3. Memory Layout ... 31
5.4. Interrupt Vectors and Handlers .. 32
5.5. Supported Boards for MIPS ELF ... 33

6. Sourcery G++ Debug Sprite .. 35
6.1. Probing for Debug Devices .. 36
6.2. Debug Sprite Example .. 36
6.3. Invoking Sourcery G++ Debug Sprite ... 37
6.4. Sourcery G++ Debug Sprite Options .. 38
6.5. MDI Devices ... 38
6.6. Debugging a Remote Board ... 40
6.7. Supported Board Files ... 41
6.8. Board File Syntax .. 41

7. Next Steps with Sourcery G++ .. 44
7.1. Sourcery G++ Knowledge Base .. 45
7.2. Manuals for GNU Toolchain Components ... 45

A. Sourcery G++ Lite Release Notes ... 46
A.1. Changes in Sourcery G++ Lite for MIPS ELF ... 47

iii

B. Sourcery G++ Lite Licenses ... 60
B.1. Licenses for Sourcery G++ Lite Components .. 61
B.2. Sourcery G++ Software License Agreement .. 62
B.3. Attribution .. 65

iv

Sourcery G++ Lite

Preface
This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

v

1. Intended Audience
This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

Chapter 3, “Sourcery G++ Lite for
MIPS ELF”

This chapter contains information about using Sourcery G++
Lite that is specific to MIPS ELF targets. You should read
this chapter to learn how to best use Sourcery G++ Lite on
your target system.

Chapter 4, “Using Sourcery G++
from the Command Line”

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Se-
quence”

CS3 is CodeSourcery's low-level board support library. This
chapter documents the boards supported by Sourcery G++
Lite and the compiler and linker options you need to use with
them. It also explains how you can use and modify CS3-
provided definitions for memory maps, system startup code
and interrupt vectors in your own code.

Chapter 6, “Sourcery G++ Debug
Sprite”

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite allows you to debug
programs running on a bare board without an operating system.
This chapter includes information about the debugging devices
and boards supported by the Sprite for MIPS ELF.

Chapter 7, “Next Steps with Sourcery
G++”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

Appendix A, “Sourcery G++ Lite
Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for MIPS ELF. You should read
through these notes to learn about new features and bug fixes.

vi

Preface

Appendix B, “Sourcery G++ Lite
Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vii

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

1

Sourcery G++ Lite for MIPS ELF is intended for developers working on embedded applications or
firmware for boards without an operating system, or that run an RTOS or boot loader. This Sourcery
G++ configuration is not intended for Linux or uClinux kernel or application development.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for MIPS ELF”.

1.1. Installation and Set-Up
Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site1, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

Install drivers for your debug device. If you plan to use the Sourcery G++ Debug Sprite, you
may need to install drivers, libraries, or other software on your host system. Refer to Chapter 6,
“Sourcery G++ Debug Sprite” for a list of supported devices and information about installing drivers
and other device set-up. Sourcery G++ Lite also supports third-party debug devices that communicate
via the GDB remote serial protocol. If you plan to use one of these devices, follow the manufacturer's
directions to connect the device and install any required drivers or software.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System
Identify your target board. On bare-metal targets, you must explicitly specify a linker script
for your target board on your link command line. Supported boards are listed in Chapter 5, “CS3™:
The CodeSourcery Common Startup Code Sequence”. You can also choose a simulator as your target
board.

1.3. Building Your Program
Build your program with Sourcery G++ command-line tools. Create a simple test program,
and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite. On bare-metal targets, you must specify a linker script using
the -T option on your link command line. Supported boards and linker scripts are listed in Chapter 5,
“CS3™: The CodeSourcery Common Startup Code Sequence”.

1.4. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Run or debug your program in the simulator. Sourcery G++ Lite includes an instruction-set
simulator, which provides an easy way to run or debug your program without requiring target hard-
ware. The simulator can be run directly from the command line (see Section 4.3, “Running Applica-
tions in the Simulator”) or via the debugger (see Section 4.4, “Running Applications from GDB”).

Debug your program on the target using the Debug Sprite. You can use the Sourcery G++
Debug Sprite to load and execute your program on the target from the debugger. Refer to Section 4.4,
“Running Applications from GDB” for instructions on using the Sprite from the GDB command
line. Detailed reference material for the Sourcery G++ Debug Sprite, including information about
supported debug devices, can be found in Chapter 6, “Sourcery G++ Debug Sprite”.

Run your program on the target using YAMON. You can run programs built with Sourcery
G++ Lite on MIPS ELF targets via the YAMON boot monitor. For instructions, refer to Section 3.5,
“Using Sourcery G++ with YAMON”. Note that you must select a YAMON linker script profile
when building your program.

Debug your program on the target using a third-party debug device. Sourcery G++ supports
debugging programs on the remote target using third-party debug devices that can communicate via
the GDB remote serial protocol. For command-line GDB instructions, see Section 4.4, “Running
Applications from GDB”.

3

Quick Start

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery G++ Lite.You will learn how to:

1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

4

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is mips-sde-elf.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery G++ supports the following host operating systems and architectures:

• Microsoft Windows 2000, Windows XP, Windows Vista, and Windows 7 systems using IA32,
AMD64, and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SuSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the
default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery G++ Lite on these systems, you must make /bin/sh a symbolic link
to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

5

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery G++ Lite for MIPS ELF” for requirements that apply to the target system.

2.3. Downloading an Installer
If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web site1. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the .exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite
The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

6

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

7

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

8

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-4.4.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates
If you have already installed an earlier version of Sourcery G++ Lite for MIPS ELF on your system,
it is not necessary to uninstall it before using the installer to unpack a new version in the same location.
The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the MIPS ELF target all begin with
mips-sde-elf. This means that you can install Sourcery G++ for multiple target systems in the
same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

9

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> mips-sde-elf-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 4.4-226.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

10

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh),
use the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-mips-sde-elf/man.

You can test that your PATH is set up correctly by running the following command:

> mips-sde-elf-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 4.4-226.

2.7. Uninstalling Sourcery G++ Lite
The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered. In particular, the mips-sde-elf
directory located in the install directory will be removed entirely by the uninstaller.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the graphical installer. Start the graphical uninstaller by invoking the executable Uninstall execut-
able located in your installation directory, or use the uninstall shortcut created during installation.
After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory with the -i console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a
program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

11

Installation and Configuration

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. Start the graphical uninstaller by invoking the executable Uninstall
shell script located in your installation directory. After the uninstaller starts, follow the on-screen
dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a .tar.bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Installation and Configuration

Chapter 3
Sourcery G++ Lite for MIPS ELF
This chapter contains information about features of Sourcery G++ Lite that are specific to
MIPS ELF targets. You should read this chapter to learn how to best use Sourcery G++
Lite on your target system.

13

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery G++ Lite for
MIPS ELF, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.4.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.19.51GNU Binary Utilities

Debugging support and simulators

Separate manual included.7.0.50GNU Debugger

See Chapter 6, “Sourcery G++ Debug Sprite”.4.4-226Sourcery G++ Debug Sprite for
MIPS

See Section 4.3, “Running Applications in the
Simulator”.

N/AGDB Simulator

Target libraries

See Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence”.

4.4-226CodeSourcery Common Startup Code
Sequence

Separate manuals included.1.17.0Newlib C Library

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Sourcery G++ Lite includes linker scripts as well as runtime libraries for each multilib. You can find
these files in multilib-specific subdirectories of the mips-sde-elf/lib directory of your Sourcery
G++ install.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for MIPS ELF.

MIPS32 revision 2 - Big-Endian, O32

defaultCommand-line option(s):

./Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32

-ELCommand-line option(s):

el/Library subdirectory:

14

Sourcery G++ Lite for MIPS ELF

MIPS32 revision 2 - Big-Endian, O32, mips16

-mips16Command-line option(s):

mips16/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, fp64

-mfp64Command-line option(s):

fp64/Library subdirectory:

MIPS32 revision 2 - Soft-Float, O32

-msoft-floatCommand-line option(s):

sof/Library subdirectory:

MIPS32 revision 2 - No-Float, O32

-mno-floatCommand-line option(s):

nof/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, fp64

-mips16 -mfp64Command-line option(s):

mips16/fp64/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, Soft-Float

-mips16 -msoft-floatCommand-line option(s):

mips16/sof/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, No-Float

-mips16 -mno-floatCommand-line option(s):

mips16/nof/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, code-readable=no

-mips16 -mcode-readable=noCommand-line option(s):

mips16/spram/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, fp64, code-readable=no

-mips16 -mfp64 -mcode-readable=noCommand-line option(s):

mips16/fp64/spram/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, Soft-Float, code-readable=no

-mips16 -msoft-float -mcode-readable=noCommand-line option(s):

mips16/sof/spram/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, mips16, No-Float, code-readable=no

-mips16 -mno-float -mcode-readable=noCommand-line option(s):

mips16/nof/spram/Library subdirectory:

15

Sourcery G++ Lite for MIPS ELF

MIPS32 revision 2 - Little-Endian, O32, mips16

-EL -mips16Command-line option(s):

el/mips16/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, fp64

-EL -mfp64Command-line option(s):

el/fp64/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, Soft-Float

-EL -msoft-floatCommand-line option(s):

el/sof/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, No-Float

-EL -mno-floatCommand-line option(s):

el/nof/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, fp64

-EL -mips16 -mfp64Command-line option(s):

el/mips16/fp64/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, Soft-Float

-EL -mips16 -msoft-floatCommand-line option(s):

el/mips16/sof/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, No-Float

-EL -mips16 -mno-floatCommand-line option(s):

el/mips16/nof/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, code-readable=no

-EL -mips16 -mcode-readable=noCommand-line option(s):

el/mips16/spram/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, fp64, code-readable=no

-EL -mips16 -mfp64 -mcode-readable=noCommand-line option(s):

el/mips16/fp64/spram/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, Soft-Float, code-readable=no

-EL -mips16 -msoft-float -mcode-readable=noCommand-line option(s):

el/mips16/sof/spram/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, mips16, No-Float, code-readable=no

-EL -mips16 -mno-float -mcode-readable=noCommand-line option(s):

el/mips16/nof/spram/Library subdirectory:

16

Sourcery G++ Lite for MIPS ELF

MIPS32 revision 2 - Big-Endian, O32, micromips

-mmicromipsCommand-line option(s):

micromips/Library subdirectory:

MIPS32 revision 2 - Big-Endian, O32, micromips, Soft-Float

-mmicromips -msoft-floatCommand-line option(s):

micromips/sof/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, micromips

-EL -mmicromipsCommand-line option(s):

el/micromips/Library subdirectory:

MIPS32 revision 2 - Little-Endian, O32, micromips, Soft-Float

-EL -mmicromips -msoft-floatCommand-line option(s):

el/micromips/sof/Library subdirectory:

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the -print-multi-directory option in addition to your other
build options. For example:

> mips-sde-elf-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. CS3 Support
Sourcery G++ Lite includes CS3 linker scripts and initialization code to support three different classes
of target configurations:

• Simulator targets, such as MIPSsim, running under control of the debugger.

• Malta or SEAD-3 hardware targets running in a bare-metal configuration under control of the de-
bugger.

• Malta or SEAD-3 hardware targets running under control of the YAMON boot monitor.

17

Sourcery G++ Lite for MIPS ELF

You must use the appropriate linker script to match your target, since the memory layouts and startup
code sequences are different in each case. Refer to Chapter 5, “CS3™: The CodeSourcery Common
Startup Code Sequence” for details on the supported boards for this version of Sourcery G++ Lite.

For simulator and bare-metal targets, CS3 provides semihosted I/O via the debugger console on the
host. For instructions on loading and running code on the target from command-line GDB, see Sec-
tion 4.4, “Running Applications from GDB”.

3.4. Using Sourcery G++ with MIPS Boards
The provided CS3 linker scripts for MIPS Malta and SEAD-3 boards (both bare-metal and YAMON
profiles) assume a minimum amount of RAM is available on the target. Refer to the following table
for the specific requirements. If your target board has less memory, you must adjust the memory
layout used by the linker by specifying a custom linker script.

Memory RequirementBoard

128MBMalta

4MBSEAD-3 LX50

128MBSEAD-3 LX110

Find the linker script for your selected profile, such as mips-sde-elf/lib/
malta-ram-hosted.ld, in your Sourcery G++ Lite installation and copy it to your project
working directory. In your local copy, find the MEMORY directive and edit the LENGTH expression
to match the amount of memory available on your board. Then, use the full absolute pathname of
your modified linker script with the -T command-line option when linking your program.

3.5. Using Sourcery G++ with YAMON
For YAMON targets, CS3 provides basic I/O services via the YAMON console. This section briefly
covers how to load and run programs using YAMON.

To prepare an application to run from YAMON, you must first convert the executable file to SREC
format. You can do this from the command line on your host system using the objcopy utility provided
with Sourcery G++ Lite.

> mips-sde-elf-objcopy -O srec prog prog.srec

Next, use YAMON to load the SREC image file into RAM. For example, to load via TFTP, use a
command similar to:

YAMON> load tftp://host/path/prog.srec

Then, start the program from the YAMON prompt:

YAMON> go .

For more detailed information about YAMON usage and features, refer to the YAMON User's
Manual.

18

Sourcery G++ Lite for MIPS ELF

3.6. Profiling Support
Sourcery G++ Lite includes CS3 support for code profiling on MIPS ELF targets using gprof. To
enable profiling, compile your program with the -pg option. You must also build your program
with a hosted linker script.

You can run a program built with profiling from the debugger the same as you would any other
hosted application. While your program is running, profiling data is saved in buffers in the heap
memory area on the target. This may affect the amount of memory available to your application, and
it is also possible that the profiler itself may run out of memory. Profiling data is written to a file on
the host (gmon.out) only when your application exits. Since many embedded applications are
structured to run indefinitely rather than exit, you may need to add an explicit exit call in order to
collect profiling data.

For instructions on using the mips-sde-elf-gprof utility to process the collected gmon.out
data, refer to the GNU Profiler (gprof) manual included with Sourcery G++ Lite.

3.7. Using Flash Memory
Sourcery G++ Lite supports development and debugging of applications loaded into flash memory
on MIPS ELF targets. There are three steps involved:

1. You must use an appropriate linker script that identifies the ROM memory region on your target
board, and locates the program text within that region. Refer to Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Sequence” for information about the boards supported by Sourcery
G++.

2. Next, load your program into the flash memory on your target board. You must use third-party
tools to program the flash memory.

3. Finally, when debugging a program in flash memory, GDB must be told about the ROM region
so that it knows where it must use hardware breakpoints to control program execution. If you are
using the Sourcery G++ Debug Sprite to debug your program, the Sprite does this automatically,
using the memory map provided in the board configuration file. Otherwise, you must provide this
information explicitly.

When using GDB from the command line, you can mark the flash memory as read-only by using
the command:

(gdb) mem start end ro

where start and end define the address range of the read-only memory region.

Although GDB automatically attempts to use hardware breakpoints on code locations in the read-
only memory region, on many targets the number of available hardware breakpoints is very small.
Furthermore, GDB also uses hardware breakpoints internally to implement commands such as step,
next, and finish. Thus the number of breakpoints you can explicitly set in ROM may be fewer
than the number supported by the target system.

19

Sourcery G++ Lite for MIPS ELF

3.8. Additional Documentation
A document that provides additional details on using Sourcery G++ Lite for MIPS ELF is provided.
The document can be found at share/doc/sourceryg++-mips-sde-elf/pdf/MIPS_
TOOLCHAIN.pdf within your installation directory.

20

Sourcery G++ Lite for MIPS ELF

Chapter 4
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ Lite from the command line.

21

4.1. Building an Application
This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is mips-sde-elf, as indicated
by the mips-sde-elf command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a
file named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

Compile and link this program using the command:

> mips-sde-elf-gcc -o factorial main.c -T script

Sourcery G++ requires that you specify a linker script with the -T option to build applications for
bare-board targets. Linker errors like undefined reference to `read' are a symptom of
failing to use an appropriate linker script. Default linker scripts are provided in mips-sde-elf/
lib. Refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for inform-
ation about the boards and linker scripts supported by Sourcery G++ Lite. You must also add the
processor options for your board, as documented in that chapter, to your compile and link command
lines.

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace mips-sde-elf-gcc with mips-sde-elf-g++.)

4.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them. Alternatively, you can use the Sourcery G++ Debug Sprite from within GDB to
download and run programs on the target via a supported hardware debugging device.

4.3. Running Applications in the Simulator
Sourcery G++ Lite includes a simulator that you can use on the host system to run programs compiled
for the target system. Since you do not need target hardware, this is the easiest way to try out Sourcery
G++.

22

Using Sourcery G++ from the Command Line

To use the simulator run:

> mips-sde-elf-run factorial

You should see the expected output:

factorial(0) = 1
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880

You can also use the simulator to execute target programs when debugging with GDB. See Section 4.4,
“Running Applications from GDB” for more information.

The simulator supports the MIPS32r2 instruction set, including the MIPS16e, MIPS DSP and DSP
Revision 2, SmartMIPS, and MIPS-3D ASEs. It can also emulate earlier variants of the MIPS archi-
tecture.

4.4. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. You can also run and debug programs using the GDB simulator.

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 4.1, “Building
an Application”, enter:

> mips-sde-elf-gdb factorial

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.4.1. Connecting to the GDB Simulator

GDB includes a simulator that allows you to debug MIPS ELF applications without target hardware.
To start and connect to the simulator from within GDB, use this command:

(gdb) target sim

4.4.2. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 6, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

23

Using Sourcery G++ from the Command Line

(gdb) target remote | mips-sde-elf-sprite arguments

Refer to Section 6.3, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

4.4.3. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

4.4.4. Loading and Running Applications

Connecting to a bare-metal target or simulator from GDB does not cause your program to be loaded
into target memory. You must do this explicitly from GDB after you connect:

(gdb) load

Alternatively, you can use third-party tools to load your application into flash memory before starting
GDB.

To begin execution of your application, you should generally use the continue command:

(gdb) continue

However, you should use run instead of continue to start your program if you used target
sim to connect:

(gdb) run

24

Using Sourcery G++ from the Command Line

Chapter 5
CS3™:The CodeSourcery
Common Startup Code Sequence
CS3 is CodeSourcery's low-level board support library.This chapter documents the boards
supported by Sourcery G++ Lite and the compiler and linker options you need to use with
them. It also explains how you can use and modify CS3-provided definitions for memory
maps, system startup code and interrupt vectors in your own code.

25

Many developers turn to the GNU toolchain for its cross-platform consistency: having a single system
support so many different processors and boards helps to limit risk and keep learning curves gentle.
Historically, however, the GNU toolchain has lacked a consistent set of conventions for processor-
and board-level initialization, language run-time setup, and interrupt and trap handler definition.

The CodeSourcery Common Startup Code Sequence (CS3) addresses this problem. For each supported
system, CS3 provides a set of linker scripts describing the system's memory map, and a board support
library providing generic reset, startup, and interrupt handlers. These scripts and libraries all follow
a standard set of conventions across a range of processors and boards.

In addition to providing linker support, CS3's functionality is fully integrated with the Sourcery G++
Debug Sprite. For each supported board, CS3 provides the board file containing the memory map
and initialization sequence required for debugging applications on the board via the Sprite, as docu-
mented in Section 6.7, “Supported Board Files”.

This chapter is organized in two parts. The first part explains CS3 concepts:

• Section 5.1, “Linker Scripts” provides basic information you need to know in order to select an
appropriate CS3-provided linker script for your MIPS ELF board.

• CS3's program startup and termination model is discussed in Section 5.2, “Program Startup and
Termination”.

• Section 5.3, “Memory Layout” discusses the mapping from program sections to memory regions.
It also explains how you can refer to memory regions using CS3-provided symbolic names from
C, assembly language, or the linker script, and customize placement of code or data in your program.

The second part provides details about the CS3 implementation for MIPS ELF:

• Section 5.5, “Supported Boards for MIPS ELF” lists the boards supported by CS3 for MIPS ELF,
and the available linker scripts for them.

5.1. Linker Scripts
When you build programs for MIPS ELF targets, you must use a linker script. The linker script serves
several purposes:

• It determines the memory addresses for placement of code and data sections.

• It defines symbolic names for memory regions present on the board, which you can use program-
matically within your code.

• It provides appropriate program startup and termination code, and causes the linker to pull in any
low-level board support libraries that are required to run code on the target.

• It optionally provides a hosting library for basic I/O functionality.

• It provides a default interrupt vector appropriate for the target processor.

When invoking the Sourcery G++ linker from the command line, you must explicitly supply a linker
script using the -T option; otherwise a link error results.

CS3 may provide multiple linker scripts for different configurations using the same board. For ex-
ample, on some boards CS3 may support running the program from either RAM or ROM (flash).
Some CS3 link configurations are also designed to co-exist with, or be run from, a boot monitor on

26

CS3™: The CodeSourcery Common Startup Code Sequence

the target board. Simulator targets typically require different startup code configurations than hardware
targets. In CS3 terminology, each of these different configurations is referred to as a profile.

The remainder of this section discusses profile and hosting selection considerations in more detail.
You can find the full list of supported boards and linker scripts included in this release of Sourcery
G++ Lite in Section 5.5, “Supported Boards for MIPS ELF”.

5.1.1. Program and Data Placement

Many boards have both RAM and ROM (flash) memory devices. CS3 provides distinct linker scripts
to place the application either entirely in RAM, or to place code and read-only data in ROM.

Some boards have very small amounts of RAM memory. If you use large library functions (such as
printf and malloc), you may overflow the available memory. You may need to use the ROM-
based profile for such programs, so that the program itself is stored in ROM. You may be able to
reduce the total amount of memory used by your program by replacing portions of the Sourcery G++
runtime library and/or startup code.

5.1.2. Hosting and Semihosting

CS3 is designed to support boards without an operating system. To allow functions like open and
write to work without operating system support, a semihosting feature is supported, in conjunction
with the debugger.

With semihosting enabled, these system calls are translated into equivalent function calls on your
host system. You can only use these function calls while connected to the debugger; if you try to use
them when disconnected from the debugger, you will get a hardware exception.

Semihosting requires support from the remote GDB debugging stub or agent, as well as the debugger
itself. The Sourcery G++ Debug Sprite implements semihosting for all supported devices. Semihosting
is also supported by the GDB Simulator included with Sourcery G++ Lite. However, semihosting
may not be supported by debugging stubs provided by third parties. If you are using a debug device
that communicates with GDB using the GDB remote protocol, check the documentation for your
device to see whether semihosting is supported.

A good use of semihosting is to display debugging messages. For example, this program prints a
message on the debugger console on the host:

#include <unistd.h>

int main () {
 write (STDERR_FILENO, "Hello, world!\n", 14);
 return 0;
}

The hosted CS3 linker scripts provide the semihosting support, and as such programs linked with
them may only be run with the debugger. For production code, or programs where memory usage
is tightly constrained, use the unhosted CS3 linker scripts instead. These scripts provide stub versions
of the system calls, which return an appropriate error value in errno. If such a stub system call is
required in the executable, the linker also produces a warning. Such a warning may indicate that you
have left debugging code active, or that your program contains unused code.

As an alternative to semihosting via the debugger, some targets supported by CS3 can run a boot
monitor that provides console I/O services and other basic system calls. CS3 can also provide hosting

27

CS3™: The CodeSourcery Common Startup Code Sequence

via these facilities; where a boot monitor is supported, this is noted in the board tables below. Unlike
semihosting, hosting via the boot monitor can be used when running programs outside of the debugger.

5.1.3. Specifying a Linker Script

When using Sourcery G++ from the command line, you must add -T script to your linking
command, where script is the appropriate linker script. For example, to target MIPS Malta boards,
you could link with -T malta-ram-hosted.ld.

5.2. Program Startup and Termination
This section documents CS3's model for target initialization prior to invoking the main function of
your program, and aspects of program termination that are left unspecified in the C and C++ standards.
It explains how you can customize or override the default behavior for your application.

CS3 divides the startup sequence into three phases:

• The hard reset phase (__cs3_reset) includes actions such as initializing the memory controller
and setting up the memory map.

• The assembly initialization phase (__cs3_start_asm) prepares the stack to run C code, and
jumps to the C initialization function.

• The C initialization phase (__cs3_start_c) is responsible for initializing the data areas, running
constructors for statically-allocated objects, and calling main.

The hard reset and assembly initialization phases are necessarily written in assembly language; at
reset, there may not yet be stack to hold compiler temporaries, or perhaps even any RAM accessible
to hold the stack. These phases do the minimum necessary to prepare the environment for running
simple C code. Then, the code for the final phase may be written in C; CS3 leaves as much as possible
to be done at this point.

The CodeSourcery board support library provides default code for all three phases. The hard reset
phase is implemented by board- and profile-specific code. The assembly initialization phase is im-
plemented by profile-specific code. The C initialization phase is implemented by generic code.

5.2.1.The Hard Reset Phase

This phase, which begins at __cs3_reset, is responsible for initializing board-specific registers,
such as memory base registers and DRAM controllers, or scanning memory to check the available
size. It is written in assembler and ends with a jump to __cs3_start_asm, which is where the
assembly initialization phase begins.

The hard reset code is in a section named .cs3.reset. CS3 linker scripts define __cs3_reset
as an alias for a board- and profile-specific entry point. You may override the CS3-provided reset
code by defining your own __cs3_reset entry point in the .cs3.reset section.

Program execution always begins at __cs3_reset, whether the program is started from the reset
vector, the debugger, or a boot monitor. However, the __cs3_reset code linked into the application
is typically non-empty only for ROM-based profiles. For example, in a RAM-based profile, resetting
the memory controllers would overwrite the code being executed.

When using the Sourcery G++ Debug Sprite, the Sprite is responsible for carrying out the hard reset
actions before the program is loaded onto the target. This is performed prior to execution of both
RAM- and ROM-profile applications from the debugger. Thus, when debugging a ROM-profile ap-

28

CS3™: The CodeSourcery Common Startup Code Sequence

plication, hard reset is actually performed twice — once by the Sprite, and once by the application
itself.

5.2.2.The Assembly Initialization Phase

This phase is responsible for initializing the stack pointer and creating an initial stack frame. The
symbol __cs3_start_asm marks the entry point of the assembly initialization code. The assembly
initialization phase ends with a call or jump to __cs3_start_c.

The assembly initialization phase is profile-specific. For example, while bare-board applications
typically must initialize the stack themselves, CS3 also supports boot-monitor profiles where the
stack is initialized by the boot monitor before it launches the application. Likewise, some simulators
automatically initialize the stack pointer and initial stack frame on startup, while others require a
supervisory operation on startup to determine the amount of available memory. Each of these scen-
arios requires different assembly initialization behavior.

Note that on bare-board targets setting the stack pointer explicitly in the assembly initialization phase
is required even if the processor itself initializes the stack pointer automatically on reset. This is to
support running programs from the debugger as well as from processor reset.

For backwards compatibility with previous versions of CS3, on RAM and ROM profiles the symbol
__cs3_start_asm is actually an alias for a symbol named _start. However, referencing or
defining _start directly is now deprecated.

The value of the symbol __cs3_stack provides the initial value of the stack pointer for profiles
that must set it explicitly. The CodeSourcery linker scripts provide a default value for this symbol,
which you may override by defining __cs3_stack yourself.

The initial stack frame is created for the use of ordinary C and C++ calling conventions. The stack
should be initialized so that backtraces stop cleanly at this point; this might entail zeroing a dynamic
link pointer, or providing hand-written DWARF call frame information.

The last action of the assembly initialization phase is to call the C function __cs3_start_c. This
function never returns, and __cs3_start_asm need not be prepared to handle a return from it.

As with the hard reset code, the CodeSourcery board support library provides reasonable default
assembly initialization code. However, you may provide your own code by providing a definition
for __cs3_start_asm, either in an object file or a library.

5.2.3.The C Initialization Phase

Finally, C code can be executed. The C startup function is declared as follows:

void __cs3_start_c (void) __attribute__ ((noreturn));

This function performs the following steps:

• Initialize all .data-like sections by copying their contents. For example, ROM-profile linker
scripts use this mechanism to initialize writable data in RAM from the read-only data program
image.

• Clear all .bss-like sections.

• Run constructors for statically-allocated objects, recorded using whatever conventions are usual
for C++ on the target architecture.

29

CS3™: The CodeSourcery Common Startup Code Sequence

CS3 reserves priorities from 0 to 100 for use by initialization code. You can handle tasks like en-
abling interrupts, initializing coprocessors, pointing control registers at interrupt vectors, and so
on by defining constructors with appropriate priorities.

• Call main as appropriate.

• Call exit, if it is available.

As with the hard reset and assembly initialization code, the CodeSourcery board support library
provides a reasonable definition for the __cs3_start_c function. You may override this by
providing a definition for __cs3_start_c, either in an object file or in a library.

5.2.4. Arguments to main

The CodeSourcery-provided definition of __cs3_start_c can pass command-line arguments to
main using the normal C argc and argv mechanism if the board support package provides corres-
ponding definitions for __cs3_argc and __cs3_argv. For example:

int __cs3_argc;
char **__cs3_argv;

These variables should be initialized using a constructor function, which is run by __cs3_start_
c after it initializes the data segment. Use the constructor attribute on the function definition:

__attribute__((constructor))
static void __cs3_init_args (void) {
 __cs3_argc = ...;
 __cs3_argv = ...;
}

The constructor function may have an arbitrary name; __cs3_init_args is used only for illus-
trative purposes here.

If definitions of __cs3_argc and __cs3_argv are not provided, then the default __cs3_
start_c function invokes main with zero as the argc argument and a null pointer as argv.

5.2.5. Program Termination

A program running on an embedded system is usually designed never to exit — it runs until the
system is powered down. The C and C++ standards leave it unspecified as to whether exit is called
at program termination. If the program never exits, then there is no reason to include exit, facilities
to run functions registered with atexit, or global destructors. This code would never be run and
would therefore just waste space in the application.

The CS3 startup code, by itself, does not cause exit to be present in the application. It dynamically
checks whether exit is present, and only calls it if it is. If you require exit to be present, either
refer to it within your application, or add -Wl,-u,exit to the linking command line.

Similarly, code to register global destructors is only invoked when atexit is already in the execut-
able; CS3, by itself, does not cause atexit to be present. If you require atexit, either refer to it
within your application, or add -Wl,-u,atexit to the linking command line.

30

CS3™: The CodeSourcery Common Startup Code Sequence

5.3. Memory Layout
Boards supported by CS3 can have multiple banks or regions of memory with different characteristics.
This section describes how program sections are mapped onto memory regions, and how you can
use these CS3 features to customize placement of your program's code or data in memory. CS3 also
provides a uniform set of symbolic names for each region, allowing you to programmatically refer
to each region's address range from C or assembly language as well as from the linker script.

5.3.1. Memory Regions and Program Sections

The regions that are available on a particular board are listed in the table for that board in Section 5.5,
“Supported Boards for MIPS ELF”, below. There are two kinds of regions: those documented as
"Memory regions", which are general-purpose memory banks that can be used for program or data
storage; and those documented as "Other regions", which typically correspond to memory-mapped
control registers or other special-purpose storage.

CS3 supports boards that include both ram and rom memory regions. The ram region holds the
.data and .bss sections, and the .text section in RAM profiles. In ROM profiles, the rom region
holds the .text section and initialization values for the writable data sections.

In addition, all regions documented as "Memory regions" correspond to similarly-named program
sections. For example, the linker script assigns the .ram section to the ram region.

More generally, for a memory region named R, CS3 linker scripts define a section named .R, which
may contain initialized data or code. There is also a section named .bss.R for zero-initialized data
(BSS), which is placed after the initialized data section for this region.

You can explicitly locate data or code in a section corresponding to a particular memory region using
section attributes in your source C or C++ code. Section attributes are especially useful on code
compiled for boards that include special memory banks, such as a fast on-chip cache memory, in
addition to the default ram and/or rom regions. CS3's start-up code arranges for additional data-like
sections to be initialized in the same way as the default .data section.

As an example to illustrate the attribute syntax, you can put a variable v in the .ram section using:

int v __attribute__ ((section (".ram")));

To declare a function f in this section, use:

int f (void) __attribute__ ((section (".ram"))) {...}

For more information about attribute syntax, see the GCC manual.

In addition to the .R and .bss.R sections, CS3 places a .cs3.region-head.R section at the
beginning of each region R. Explicitly placing data in .cs3.region-head.R sections is discour-
aged, because CS3 itself may want to place items (like interrupt vector tables) at these locations. If
there is a conflict, CS3 raises an error at link time.

Regions documented as "Other regions" in the tables in Section 5.5, “Supported Boards for MIPS
ELF” do not have corresponding program sections. Typically, these regions contain memory-mapped
control and I/O registers and cannot be used for general data or program storage. If your program
needs to manipulate data in these regions, you can use the CS3 memory map access interface declared
in cs3.h, as described in Section 5.3.2, “Programmatic Access to the CS3 Memory Map”.

31

CS3™: The CodeSourcery Common Startup Code Sequence

Memory maps for boards supported by Sourcery G++ Lite for MIPS ELF are documented in the
linker scripts in the mips-sde-elf/lib/ subdirectory of your Sourcery G++ installation directory.

5.3.2. Programmatic Access to the CS3 Memory Map

CS3 makes C declarations describing the memory regions on the target board available to your program
via the header file cs3.h, which you can find in the mips-sde-elf/include directory within
your install.

For each region named R, cs3.h declares a byte array variable __cs3_region_start_R at the
region's start address, and a size_t variable __cs3_region_size_R to represent the total size
of the region. These symbols are defined by the linker script and so may also be referenced from
assembly language. Note that all regions are aligned on eight-byte boundaries and sizes are also
multiples of eight bytes.

For memory regions that can correspond to program sections (as described in Section 5.3.1, “Memory
Regions and Program Sections”), there are additional symbols __cs3_region_init_R and
__cs3_region_init_size_R that describe constant data used to initialize the region. During
the C initialization phase (Section 5.2, “Program Startup and Termination”), this data is copied into
the lower part of the memory region. The symbol __cs3_region_zero_size_R represents the
size of the zero-initialized .bss.R section following the initialized data. Any of these identifiers
may actually be defined as a preprocessor macro that expands to an expression of the appropriate
type and value.

To perform the memory region initializations during startup, CS3 internally uses the array variable
__cs3_regions, which contains descriptors for all of the writable (RAM) memory regions. These
descriptors are also exposed in cs3.h; refer to the header file for details.

5.3.3. Heap and Stack Placement

CS3 linker scripts provide default placement of the heap and stack in the RAM region. However,
you can override the defaults by providing your own definitions of the associated CS3 variables. For
example, you may put the heap and/or stack in some other memory region.

Heap placement is controlled by defining the symbol __cs3_heap_start at the beginning of
the heap, and either the symbol __cs3_heap_end or the pointer variable __cs3_heap_limit
to mark the end of the heap. For example, this fragment of C code places the heap in a region named
extsram:

#define HEAPSIZE ... /* However big you want to make it. */
unsigned char __cs3_heap_start[HEAPSIZE]
 __attribute__ ((section (".bss.extsram"), aligned(8)));
unsigned char *__cs3_heap_limit = __cs3_heap_start + HEAPSIZE;

The default initial stack pointer for bare-metal profiles is given by the symbol __cs3_stack. Stack
initialization is discussed in more detail in Section 5.2.2, “The Assembly Initialization Phase”.

You can find C declarations for the CS3 heap and stack symbols in the header file cs3.h.

5.4. Interrupt Vectors and Handlers
CS3 provides standard handlers for interrupts, exceptions and traps, but also allows you to define
your own handlers as needed. In this section, we use the term interrupt as a generic term for this
entire class of events.

32

CS3™: The CodeSourcery Common Startup Code Sequence

Different processors handle interrupts in various ways, but there are two general approaches:

• Some processors fetch an address from an array indexed by the interrupt number, and jump to that
address. We call these address vector processors.

• Others multiply the interrupt number by some constant factor, add a base address, and jump directly
to that address. Here, the interrupt vector consists of blocks of code, so we call these code vector
processors.

MIPS processors use the code vector model. The remainder of this section assumes that you have
some understanding of the specific requirements for your target; refer to the architecture manuals if
necessary.

5.4.1. MIPS ELF Interrupt Vector Implementation

On MIPS ELF targets, CS3 provides interrupt and exception handling support using the MIPS SDE
library interface, which is integrated with the exception support provided by the YAMON boot
monitor. The interfaces are modelled on the POSIX signal handling mechanism and are declared in
the C header file mips/xcpt.h.

5.4.2. Writing Interrupt Handlers

Interrupt handlers typically require special call/return and register usage conventions that are target-
specific and beyond the scope of this document. In many cases, normal C functions cannot be used
as interrupt handlers.

As an alternative to writing interrupt handlers in assembly language, on MIPS targets they may be
written in C using the interrupt attribute. This tells the compiler to generate appropriate function
entry and exit sequences for an interrupt handler. There are additional MIPS-specific attributes you
can specify to modify the behavior of the interrupt handler. Refer to the GCC manual for more details
about attribute syntax and usage.

5.5. Supported Boards for MIPS ELF
CS3 provides support for the following boards on MIPS ELF targets.

MIPS Malta

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

malta-ram-hosted.ldRAM HostedLinker scripts:

malta-ram.ldRAM Unhosted

malta-yamon.ldYAMON

33

CS3™: The CodeSourcery Common Startup Code Sequence

MIPS SEAD-3 LX110

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

sead3-lx110-ram-hosted.ldRAM HostedLinker scripts:

sead3-lx110-ram.ldRAM Unhosted

sead3-lx110-yamon.ldYAMON

MIPS SEAD-3 LX50

unspecifiedProcessor name:

noneProcessor options:

ram,
isram (64K Instruction SRAM),
dsram (64K Data SRAM)

Memory regions:

sead3-lx50-ram-hosted.ldRAM HostedLinker scripts:

sead3-lx50-ram.ldRAM Unhosted

sead3-lx50-dual-sram-hosted.ldDual SRAM Hosted

sead3-lx50-dual-sram.ldDual SRAM Unhos-
ted

sead3-lx50-yamon.ldYAMON

sead3-lx50-yamon-dual-sram.ldYAMON Dual
SRAM

MIPSsim

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

mipssim-hosted.ldSimulator HostedLinker scripts:

mipssim.ldSimulator Unhosted

34

CS3™: The CodeSourcery Common Startup Code Sequence

Chapter 6
Sourcery G++ Debug Sprite
This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite allows you to debug programs running on a bare board without an operating
system.This chapter includes information about the debugging devices and boards supported
by the Sprite for MIPS ELF.

35

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for MIPS ELF. This Sprite is provided
to allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 6.3, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

6.1. Probing for Debug Devices
Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the -i option:

> mips-sde-elf-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery MIPS Debug Sprite (Sourcery G++ Lite 4.4-226)
mdi: [lib=<file>&cfg=<file>&rst=<n>] MDI device
 mdi:/23/1 - 24KE (Instruction)/24KE LE
 mdi:/23/2 - 24KE (Instruction)/24KE BE
 mdi:/24/1 - 24KE (Cycle)/24KE LE
 mdi:/24/2 - 24KE (Cycle)/24KE BE
 mdi:/$Target/$Device - Generic MDI target/device

This shows that MDI (Microprocessor Debug Interface) devices are supported. Four MIPSsim devices
have been autodetected. Note that additional configuration steps for the MDI library are required to
allow the Sprite to autodetect devices; see Section 6.5, “MDI Devices”.

6.2. Debug Sprite Example
Start by compiling and linking a simple test program for your target board, following the instructions
in Chapter 4, “Using Sourcery G++ from the Command Line”. Use the -g option to tell the compiler
to generate debugging information.

For example, to build the factorial program to run on MIPSsim, use:

> mips-sde-elf-gcc -g -Tmipssim-hosted.ld main.c -o factorial

Next start the debugger on your host system:

> mips-sde-elf-gdb factorial

To connect GDB to the MDI target, use a command similar to:

36

Sourcery G++ Debug Sprite

(gdb) target remote | mips-sde-elf-sprite mdi:/23/2 mipssim

Refer to Section 6.5, “MDI Devices” for additional set-up required to use the Sprite with MDI devices.

The Sprite prints some status messages as it connects to your debug device and target board. If the
connection is successful, you should see output similar to:

mips-sde-elf-sprite:Target reset
0x00008936 in ?? ()
(gdb)

Next, use GDB to load your program onto the target board.

(gdb) load

At this point you can use GDB to control the execution of your program as required. For example:

(gdb) break main
(gdb) continue

6.3. Invoking Sourcery G++ Debug Sprite
The Debug Sprite is invoked as follows:

> mips-sde-elf-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery G++ Lite for MIPS ELF:

mdi Use a Microprocessor Debug Interface (MDI) debugging device. Refer to Section 6.5, “MDI
Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 6.7, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the -b option to list the available board files. You
can also write a custom board file; see Section 6.8, “Board File Syntax” for more information about
the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

37

Sourcery G++ Debug Sprite

6.4. Sourcery G++ Debug Sprite Options
The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | mips-sde-elf-sprite ... command, you do not need
this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

6.5. MDI Devices
The Sourcery G++ Debug Sprite for MIPS supports MDI (Microprocessor Debug Interface) devices.
Each MDI device is identified by a target number and device number; these form the path part of
the device URL, and the hostname and port must be empty or omitted. Thus, the device-url
has the form:

mdi:///targetnum/devicenum[?device-options]

You can also use the environment variables GDBMDITARGET and GDBMDIDEVICE to provide de-
faults for the targetnum and devicenum.

The following device-options are permitted:

lib=filename This option specifies the MDI library to load. It is equivalent
to setting the GDBMDILIB environment variable.

cfg=filename Some MDI target libraries, such as MIPSsim, require a config-
uration file. (This is distinct from the Sprite's own board-
file.) You can use this option to specify the file. It is equival-
ent to setting the GDBMIPSSIMCONFIG environment variable.

38

Sourcery G++ Debug Sprite

rst=seconds This option can be used to specify a delay after the target is reset
by the Sprite. If the value of seconds is greater than zero,
then execution is resumed for the specified number of seconds;
this can be used to allow power-on firmware to initialize the
memory controller and peripherals. Then the target is halted
again and queried for configuration.

If the value of seconds is -1, then the target is queried imme-
diately without reset. This is the same effect as passing the -a
command-line option to the Sprite, which allows the Sprite to
attach to a running program.

This option is equivalent to setting the GDBMDICONNRST en-
vironment variable. If neither the option nor the environment
variable are provided, the default is to reset the target and query
it immediately unless the -a option is specified.

group=/targetn/devicen This option may be specified multiple times and is cumulative.
Each of the specified devices is opened and queried and they
are all treated as threads of execution, subject to being enabled
or active; if a device is disabled or has no active thread contexts
associated with it, it is not visible to GDB but is still under
control of the Sprite in case its state changes. This option cannot
be used in combination with the team= option.

team=/targetn/devicen This option may be specified multiple times and is cumulative.
The specified devices are not opened, but are associated with
the base device by means of the MDI team mechanism for the
purpose of synchronization. The specified devices may still be
opened and controlled by another debugger (such as another
instance of the Debug Sprite) independently. This option cannot
be used in combination with the group= option.

Before you can connect to a target using the MDI API, you must tell the Debug Sprite which shared
library or DLL to load for your simulator or device. On Linux hosts you should add the directory
containing the shared library files to your LD_LIBRARY_PATH environment variable. On Windows
hosts, add the directory containing the DLLs to your PATH environment variable. Then, either set
the environment variable GDBMDILIB to the base name of the MDI library before starting the Debug
Sprite, or use the lib= device option to specify the library to load.

Similarly, the -i command-line option can only probe for devices if you have set the PATH or LD_
LIBRARY_PATH environment variable appropriately, and specify an MDI library using either the
GDBMDILIB environment variable or the lib= device option. Otherwise, it reports only the generic
device-url syntax.

For example, to use an FS2 probe on a Windows host to debug a MIPS Malta board, first add the
directory containing the MDI DLLs to your PATH. Then you can invoke the Sprite from GDB using
a command line similar to:

(gdb) target remote | mips-sde-elf-sprite \
'mdi:/2/2?lib=jnetfs2mdilib.dll&rst=7' malta

The quotes are required to prevent special characters in the device-url from being interpreted
by the shell.

39

Sourcery G++ Debug Sprite

In the above command, the rst=7 option provides for a sufficient delay for the board's reset code
to execute on connection. Since this takes several seconds, GDB may time out waiting for the Sprite
to respond. You can prevent this by issuing this command before you connect to the Sprite:

(gdb) set remotetimeout 10

To use the Sprite with MIPSsim, a configuration file is required. The configuration files provided
with the MIPSsim distribution are intended for use with standalone execution from the command
line, rather than running the program from the debugger. So, make a copy and comment out the
APP_FILE setting. It is also recommended that you comment out TRACE_FILE as well, since the
trace files can be very large.

To connect to MIPSsim using the Sprite on a Linux host, first set your LD_LIBRARY_PATH and
GDBMDILIB as described above. You can run the Sprite from the shell to probe for devices to
verify that your setup is correct:

> mips-sde-elf-sprite -i

Then, from GDB, use a command similar to:

(gdb) target remote | mips-sde-elf-sprite \
'mdi:/23/2?cfg=24KE.cfg&rst=-1' mipssim

Fill in your target and device numbers as reported by the probe output, and the full pathname to your
configuration file. The rst=-1 option is required, as MIPSsim does not support reset.

This section describes only the basic MDI usage; refer to the documentation for your MDI simulator
or debug device for details specific to that target. Note, in particular, that some MDI targets may re-
quire you to set up a license in addition to the steps given here.

6.6. Debugging a Remote Board
You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> mips-sde-elf-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

40

Sourcery G++ Debug Sprite

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base1.

6.7. Supported Board Files
The Sourcery G++ Debug Sprite for MIPS ELF includes support for the following target boards.
Specify the appropriate board-file as an argument when invoking the Sprite from the command
line.

ConfigBoard

maltaMIPS Malta

sead3-lx110MIPS SEAD-3 LX110

sead3-lx50MIPS SEAD-3 LX50

mipssimMIPSsim

6.8. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the mips-sde-elf/lib/boards directory in the
installation. Refer to the files in that directory for examples.

The file's DTD is:

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery G++. No other use is permitted.
 -->

<!ELEMENT board
 (properties?, feature?, initialize?, memory-map?)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED

1 https://support.codesourcery.com/GNUToolchain/kbentry132

41

Sourcery G++ Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

42

Sourcery G++ Debug Sprite

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

43

Sourcery G++ Debug Sprite

Chapter 7
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

44

7.1. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal1.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

7.2. Manuals for GNU Toolchain Components
Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-mips-sde-elf/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-mips-sde-elf/man/man1

Then you can invoke man as:

> man ./mips-sde-elf-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a --help option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

1 https://support.codesourcery.com/GNUToolchain/

45

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Appendix A
Sourcery G++ Lite Release Notes
This appendix contains information about changes in this release of Sourcery G++ Lite for
MIPS ELF.You should read through these notes to learn about new features and bug fixes.

46

A.1. Changes in Sourcery G++ Lite for MIPS ELF
This section documents Sourcery G++ Lite changes for each released revision.

A.1.1. Changes in Sourcery G++ Lite 4.4-226

CS3 run-time code relocation support. The CS3 startup code now supports self-relocation. If
a program is run from a target memory address other than the one selected at link time, it will copy
itself to its designated link address and continue from there. This feature allows programs linked to
execute from RAM to be loaded into ROM and started via the reset vector.

Profiling bug fix. A CS3 bug which caused an application to hang when compiled with -pg has
been fixed. Note that profiling is only supported for hosted simulator and RAM profiles, as it requires
semihosting I/O to write the collected profile data file on the host.

Fix for invalid code generation bug. An optimizer bug has been fixed that caused GCC to emit
incorrect code for some programs involving casts of a struct pointer to a pointer to the structure's
first element.

A.1.2. Changes in Sourcery G++ Lite 4.4-191

Debug Sprite termination behavior. The Sourcery G++ Debug Sprite has been enhanced to
better support GDB's different debugger shutdown modes. The GDB kill command now makes
the target run from the reset vector, while the disconnect command now leaves the target halted
at its current location. Formerly, both of these commands incorrectly caused the target to continue
running freely from the point where it had been stopped. That behavior is now supported by the
Sprite in response to the GDB detach command instead.

Debug Sprite termination bug fix. A bug in the Sourcery G++ Debug Sprite has been fixed that
caused it to crash upon termination if the device being closed reported a fatal condition while shutdown
was in progress.

Semihosting open bug fix. A bug in the Sourcery G++ Debug Sprite semihosting support has
been fixed. The bug caused GDB to crash when handling calls to open.

Improved code generation for if statements. The compiler can now generate better code for
if statements when the then and else clauses contain similar code.

SEAD-3 board support. The provided linker scripts for SEAD-3 LX50 and SEAD-3 LX110
boards have been renamed for consistency with the board names. For example, if you were formerly
using the sead3-m14kc-yamon.ld linker script, you should now use
sead3-lx110-yamon.ld. In addition, the SEAD-3 LX50 board now supports two additional
profiles, Dual SRAM and YAMON Dual SRAM, which locate program text and data regions in the
ISRAM and DSRAM memory (respectively) rather than in RAM. Refer to Chapter 5, “CS3™: The
CodeSourcery Common Startup Code Sequence” for a full listing of supported boards and provided
linker scripts in this version of Sourcery G++ Lite.

microMIPS coprocessor 1 emulation. The coprocessor 1 (floating point coprocessor) emulation
included in the CS3 library now supports the microMIPS instruction set.

Coprocessor 1 emulation cache fix. A bug in the coprocessor 1 (floating point coprocessor)
emulation has been fixed. This bug caused crashes and data corruption when the CPU instruction
cache was enabled.

47

Sourcery G++ Lite Release Notes

Debug Sprite remote command support. The Sourcery G++ Debug Sprite now supports remote
commands with GDB's monitor mdi command. Any arguments specified to this command are
passed on to the MDI library for interpretation. For more information about commands supported
see documentation supplied with the MDI library used.

Optimized software floating-point routines. The software floating-point emulation routines
used by GCC when linking with -msoft-float have been updated. The new routines provide
significant speed increases.

Linker script processing improvement. The linker can now automatically place sections that
are not mentioned in your linker script. Previously, it issued the error no memory region
specified for loadable section.

GCC internal compiler error. A bug has been fixed that caused GCC to crash when compiling
some C++ code using templates at -O2 or -O3.

Linker script compatibility. A bug that caused the linker error undefined reference to
`__cs3_start_asm' has been fixed. The bug applied to projects using a linker script from an
older version of Sourcery G++ with a newer CS3 library.

Debug Sprite performance improvements. The Sourcery G++ Debug Sprite has been tuned to
give better performance when single stepping.

GCC internal compiler error with optimize attribute. A bug has been fixed that caused the
compiler to crash when invoked with the -O0 or -O1 option on code using the optimize attribute
to specify higher optimization levels for individual functions.

Stack initialization for YAMON profiles. The start up code for YAMON profiles now initializes
the stack pointer.

A.1.3. Changes in Sourcery G++ Lite 4.4-147

Incorrect code generation bug fix. A bug in GCC has been fixed that resulted in incorrect code
for some unsigned short array accesses when compiling with -mdsp.

Linker bug fix for --section-start. A linker bug that caused --section-start to
fail to work as documented if the section is defined in multiple object files has been fixed.

Low level interrupt support. CS3 now provides the intrupt function, declared in mips/
xcpt.h, for compatibility with SDE.

GDB shared library support. GDB now supports targets that report loaded shared libraries using
the qXfer:libraries:read Remote Serial Protocol packet. For more information, see the
GDB manual.

microMIPS coprocessor 0 access macros. A bug in the CS3 library for microMIPS targets has
been fixed that caused the coprocessor 0 access macros declared in mips/cpu.h to raise an address
error exception.

Debug Sprite device path interpretation bug fix. A bug in the Sourcery G++ Debug Sprite's
interpretation of device paths has been fixed. Target and device numbers are now stable between
debug sessions as long as the configuration of the target board or simulator remains the same. Previ-
ously the numbers could change in some cases.

Debugging preprocessed source code. A compiler bug has been fixed that caused debug output
to erroneously contain the name of the intermediate preprocessed file.

48

Sourcery G++ Lite Release Notes

GDB update. The included version of GDB has been updated to 7.0.50.20100218. This update
adds numerous bug fixes and new features, including improved C++ language support, automatic
caching of stack memory, and Position Independent Executable (PIE) support.

GDB MDI target support. Microprocessor Debug Interface (MDI) protocol support is now
provided by the Sourcery G++ Debug Sprite for MIPS. The direct MDI support within GDB, which
was deprecated with the introduction of the Sprite in a previous release of Sourcery G++ Lite, has
now been removed. This includes GDB commands such as target mdi. For information about
using the Sprite to debug MDI targets, refer to Chapter 6, “Sourcery G++ Debug Sprite”.

GDB asynchronous mode fix. GDB can now be used from the command line in asynchronous
mode with remote targets. Previously, GDB did not accept user input while asynchronous commands
(such as continue &) were running.

GDB interrupt handling bug fix. A bug in GDB has been fixed that caused it to sometimes fail
to indicate that the target had stopped after being interrupted. The bug affected clients using GDB's
MI front end.

Function breakpoint bug fix. A bug in GDB has been fixed that sometimes caused breakpoints
on functions without an associated stack frame to be placed at the wrong address.

Debug Sprite multiple connections fix. When started with the -m option, the Sourcery G++
Debug Sprite no longer exits if the connection to GDB is lost when sending a response. Instead, it
goes back to waiting for another connection.

GDB and programs linked with the --gc-sections linker option. GDB has been improved
to better handle debug information found in programs and libraries linked with the --gc-sections
option. GDB formerly selected the wrong debug information in some cases, resulting in incorrect
behavior when stepping over a function or displaying local variables, for example.

GDB memory find bug fix. A bug in GDB's find command has been fixed. The bug caused
searches on large memory areas to fail or report matches at incorrect addresses.

Interrupt handler code generation bug fix. A GCC bug has been fixed that caused an assembler
warning for some functions marked with the interrupt attribute.

Debugger errors after loading program. A bug in GDB has been fixed that sometimes caused
a GDB internal error after the load command.

Frame manipulation bug fix. A bug in GDB has been fixed that caused frame manipulation
commands to report an internal error in some cases when used on arbitrary stack frames specified
by an address.

Read watchpoints bug fix. A GDB bug has been fixed that caused watchpoints set to trigger on
memory reads to be silently ignored in some cases.

Setting thread-specific breakpoints in GDB. A bug in GDB has been fixed that caused a syntax
error for the break *expression thread threadnum command.

CS3 program startup behavior revised. CS3's model for program startup has been made more
uniform across different target profiles. Changes include:

• Execution now consistently begins at hard reset (__cs3_reset) for all profiles. Formerly, the
debugger began execution at assembly initialization (_start) instead.

49

Sourcery G++ Lite Release Notes

• All profiles now perform the assembly initialization phase, using profile-specific code. Formerly,
simulator and boot monitor profiles skipped this initialization phase.

Most existing programs using customized linker scripts or startup code based on the previous CS3
initialization model should continue to work as before with the new CS3 library. For more details
on the CS3 startup model, refer to Section 5.2, “Program Startup and Termination”.

CS3 improvements. Several changes have been made to CS3 to make it easier to customize, in-
cluding improved documentation and additions and corrections to the header file cs3.h. For details,
see Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

MIPS32 revision 2.61 SYNC instruction types. Binary utilities have been extended to support
additional SYNC instruction types introduced with revision 2.61 of the MIPS32 architecture specific-
ation.

Static constructor and destructor ordering fixes. The linker now correctly ensures that static
destructors with priorities are executed after destructors without priorities. Another linker bug that
caused incorrect static constructor and destructor ordering with partial linking involved has been
fixed.

A.1.4. Changes in Sourcery G++ Lite 4.4-124

MIPS startup code fix. The CS3 startup code for RAM and simulator profile boards now auto-
matically enables the cache.

A.1.5. Changes in Sourcery G++ Lite 4.4-111

Support for MIPS M14K and M14Kc processors. Sourcery G++ Lite now supports the MIPS
M14K and M14Kc processors. To compile for these targets, use the -march=m14k -mmicromips
command-line options. Additionally, CS3 board support is provided for the MIPS SEAD-3 LX50
and LX110 boards which include these processors. Refer to Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence” for more information about boards supported by Sourcery G++
Lite.

Support for microMIPS instruction encoding. Sourcery G++ Lite now supports the microMIPS
instruction set architecture. To enable microMIPS code generation, compile and link with
-mmicromips.

Code size with -g. A bug that caused binary code size regressions in GCC 4.4 when compiling
with -g has been fixed.

A.1.6. Changes in Sourcery G++ Lite 4.4-87

Incorrect symbol addresses bug fix. A bug in the linker that caused it to assign incorrect addresses
to symbols has been fixed. The bug occurred when the input objects contained sections not explicitly
mentioned in the linker script.

Sourcery G++ Debug Sprite for MIPS. This release of Sourcery G++ Lite includes the new
Sourcery G++ Debug Sprite for MIPS. The Sprite provides similar functionality to the Microprocessor
Debug Interface (MDI) protocol support in GDB, but is implemented as an external program which
can be run from GDB, rather than in GDB itself. The GDB MDI support is deprecated and will be
removed in a future release of Sourcery G++ Lite. For information about using the Sprite, refer to
Chapter 6, “Sourcery G++ Debug Sprite”.

50

Sourcery G++ Lite Release Notes

Debugging programs built by Green Hills compilers. GDB has been further extended to ac-
commodate non-standard debug information produced by some Green Hills toolchains.

Static variables and asm statements bug fix. A bug in GCC that caused functions containing
static variables and asm statements to be miscompiled at -O2 or above has been fixed. The bug also
occurred at other optimization levels when the -fremove-local-statics command-line option
was used.

Optimizer bug fixes. Two bugs in GCC related to loop optimization have been fixed. One bug
caused internal compiler errors, while the other caused functions with complex loop nests to be
miscompiled. Both bugs occurred at -O2 or above, or at other optimization levels when the
-fpromote-loop-indices command-line option was used.

Improved assembler error checking. The assembler has been improved to perform additional
checks for invalid inputs.

A.1.7. Changes in Sourcery G++ Lite 4.4-58

GDB finish internal error. A bug has been fixed that caused a GDB internal error when using
the finish command. The bug occurred when debugging optimized code.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

Arguments to main. A bug in CS3 YAMON support has been fixed that formerly caused com-
mand-line arguments provided on program startup to be ignored. In YAMON profiles, the arguments
are now correctly passed to main via argc and argv.

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

GDB internal warning fix. A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

@FILE fix. A bug has been fixed in the processing of @FILE command-line options by GCC,
GDB, and other tools. The bug caused any options in FILE following a blank line to be ignored.

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

New header file. The header file mips/m32cache.h has been added to provide declarations
for MIPS32 cache management functions. For more information, refer to the MIPS® Toolchain
Specifics document.

Bug fix for read. A bug in CS3's console I/O support for YAMON has been fixed. The bug
caused read to return immediately rather than waiting for input to become available.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has
been fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

51

Sourcery G++ Lite Release Notes

Startup code debugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

MIPS32 TLB support. Functions for initialization and maintenance of the CPU's memory
management Translation Lookaside Buffer (TLB) have been added to CS3. For more information
about TLB support on MIPS ELF targets, refer to the MIPS® Toolchain Specifics document.

Debugging programs built by Green Hills compilers. GDB has been extended to accommodate
non-standard debug information produced by some Green Hills toolchains.

Linker script fixes. A bug in CS3 linker scripts for YAMON and simulator profiles has been
fixed. The bug resulted in data memory being too small, which sometimes caused the stack to be
overwritten during initialization, or reduced space for malloc to allocate.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.8. Changes in Sourcery G++ Lite 4.4-25

Remote debugging hardware watchpoint bug fix. A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Destructor function bug fix. A bug in CS3 has been fixed that caused functions with the
destructor attribute not to be run on program termination.

Support for MIPS 1004K cores. Sourcery G++ now includes basic compiler and assembler
support for MIPS 1004K cores. Use the -march=1004kc (integer cores), -march=1004kf2_
1 (half-speed FPU), -march=1004kf1_1 (full-speed FPU), or -march=1004kf (alias for
1004kf2_1) command-line options.

Malta board support. The Malta 24Kc board definition has been removed from CS3. This board
definition was made obsolete in a previous release by the addition of a new generic Malta board
definition that is not restricted to 24Kc processors. You should use this generic Malta board definition
in place of the deleted 24Kc-specific one. For example, if you were formerly using the
malta-24kc-yamon.ld linker script, you should now use malta-yamon.ld. Refer to
Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for a full listing of supported
boards and provided linker scripts in this version of Sourcery G++ Lite.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

52

Sourcery G++ Lite Release Notes

Stack unwinding termination bug fix. A bug has been fixed that caused GDB not to detect the
outermost frame correctly while doing stack unwinding. The bug sometimes caused the debugger
to go into an infinite loop, or other unpredictable behavior.

-fremove-local-statics optimization. The -fremove-local-statics optimization
is now enabled by default at -O2 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Profiling support. Profiling is now supported for MIPS ELF targets. For more information on
profiling with gprof, please see Section 3.6, “Profiling Support”.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8];).

Function attributes to support interrupt handling. Support for the interrupt attribute has
been implemented. use_debug_exception, keep_interrupts_masked, and use_
shadow_register_set have also been implemented. These are attributes which can be used to
modify the behavior of the interrupt handler. For more information on how to use these attributes,
please refer to the GCC manual.

GCC version 4.4.1. Sourcery G++ Lite for MIPS ELF is now based on GCC version 4.4.1. For
more information about changes from GCC version 4.3 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.4/changes.html.

Linker map address sorting. The map generated by the linker -Map option now lists symbols
sorted by address.

Floating-point register initialization for YAMON. A bug that caused the floating-point registers
to be initialized in the incorrect mode has been fixed. The reset code for YAMON applications now
initializes the floating-point register mode to conform to the compilation mode of the application.

A.1.9. Changes in Sourcery G++ Lite 4.3-221

No significant changes. There are no significant changes for MIPS ELF in this release.

A.1.10. Changes in Sourcery G++ Lite 4.3-219

Malta board support memory map. Other recent changes to Sourcery G++ have required
changing CS3's memory map for MIPS Malta boards to reserve an area of low memory for interrupt
vectors. If you are using a CS3-provided Malta linker script for your program, you will pick up the
changes automatically. If you are using a copied or custom linker script, you may need to adjust it
for this change.

MIPSsim board support. CS3 now includes a board definition intended specifically for use with
MIPSsim targets. If you were previously using a Malta linker script to build a program intended to
run on MIPSsim, you must change to use the new MIPSsim linker script instead. When invoking
the linker from the command line, use the -T mipssim-hosted.ld option to select the new
linker script. Using the new MIPSsim-specific linker script for MIPSsim targets is now necessary
because other recent changes to Sourcery G++ have required changes to the memory map used by
CS3 that are incompatible between MIPSsim and Malta hardware targets.

53

Sourcery G++ Lite Release Notes

A.1.11. Changes in Sourcery G++ Lite 4.3-199

MIPS Malta board support. Support for a generic Malta board has been added to CS3. This is
similar to the existing Malta 24Kc board support, but is not specific to a particular processor, to reflect
the fact that these boards can be configured with a number of different processors. If you were pre-
viously using the Malta 24Kc CS3 board support with a processor other than the 24Kc, you should
switch to using the new generic Malta board instead. Refer to Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence” for more information about CS3 support for these boards.

Incorrect linker diagnostic removed. The linker has been corrected to not emit an error message
when the load address of an output section with no contents overlaps an output section with contents.
This can occur in linker scripts that use MEMORY regions and AT> to place initialized contents into
ROM.

GDB backwards compatibility fix. A bug has been fixed that caused GDB to crash when loading
symbols from binaries built by very old versions of GCC.

Overloaded function resolution. The C++ compiler now correctly diagnoses an error when the
second operand of a comma expression is an unresolved set of overloaded functions. Previously, it
incorrectly used the context of the comma expression to resolve the function.

Pointer-to-member functions. A bug has been fixed that caused the C++ compiler to crash when
compiling a pointer-to-member function reference without an explicit & operator. This syntax is al-
lowed only when the -fms-extensions command-line option is used.

New assembler option: -mfix-24k. The assembler now accepts the -mfix-24k command-
line option. The use of this option causes the assembler to work around hardware errata in the eret
and deret instructions on 24K and 24KE cores.

A.1.12. Changes in Sourcery G++ Lite 4.3-152

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Linker script load address processing. A bug in the linker has been fixed affecting linker scripts
using AT>region to set the load address. This now follows the documented behavior of maintaining
the virtual address to load address difference in output section statements. Refer to the "Output
Section LMA" section of the linker manual for details of how to control the load address.

Hardware floating point emulation library. The hardware floating point emulation support
which was formerly included with the SDE library is now available as part of CS3. This library
provides trap handlers for unsupported floating-point instructions, which invoke the corresponding
soft-float library routines. To use the library in your code, compile with -mhard-float and link
with -lcs3-mips-cp1 -lcs3-mips-fpemu -Wl,--defsym,__cs3_mips_float_
type=2 . For more information about floating-point support on MIPS ELF targets, refer to the
MIPS® Toolchain Specifics document.

mips-sde-elf-objcopy bug fix. A bug has been fixed that caused
mips-sde-elf-objcopy to issue an error when generating output in the Intel HEX format and
using --change-section-lma to change section addresses.

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the -T option. Now scripts are

54

Sourcery G++ Lite Release Notes

looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

A.1.13. Changes in Sourcery G++ Lite 4.3-147

Optimized math routines. The Newlib implementations of rint, drem, sqrtf and sqrt
have been replaced with the versions of these functions that were formerly included with the SDE
math library, and are optimized specifically for MIPS targets.

mips-sde-elf-objdump bug fix. A bug has been fixed that caused
mips-sde-elf-objdump to enter an infinite loop.

Incorrect code when using -falign-labels . A bug that caused the compiler to generate
incorrect code for switch statements when the -falign-labels option is used has been fixed.

Debug section placement. A linker script bug in CS3 has been fixed that caused .debug_
ranges debug sections to be misplaced.

MDI semihosting. A bug in MDI semihosting that could result in a crash when making a system
call (such as read or write) has been fixed.

Interrupting the target from the debugger. GDB has been improved to be more responsive to
attempts to interrupt the target (as by a Ctrl+C when using GDB from the command line) during
execution of programs using semihosting.

Loop optimization improvements. A new option, -fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

Optimized string and memory functions. The Newlib implementations of memcpy, memcmp,
bzero, strcmp, strcpy, strlen and memset have been replaced with the versions of these
functions that were formerly included with the SDE C library, and are optimized specifically for
MIPS targets.

Remote debugging connection auto-retry. The target remote command within GDB now
uses a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding
race conditions when the remote GDB stub or GDB server is launched simultaneously with GDB.
The auto-retry behavior is enabled by default; refer to the GDB manual for details.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug_str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can't do that without a process to debug. when debugging a core dump file.

55

Sourcery G++ Lite Release Notes

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

A.1.14. Changes in Sourcery G++ Lite 4.3-113

GCC version 4.3.3. Sourcery G++ Lite for MIPS ELF is now based on GCC version 4.3.3. This
is a bug fix update to GCC. For more information about changes from GCC version 4.3.2 that was
included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Arguments to main. A bug in CS3 hosting support has been fixed that formerly caused command-
line arguments provided on program startup to be ignored. In hosted environments, the arguments
are now correctly passed to main via argc and argv.

Internal compiler error with -O3 or -fpredictive-commoning. A bug has been fixed
that caused internal compiler errors when compiling some code with -O3 or
-fpredictive-commoning.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

Out-of-range branches. A bug has been fixed that caused the compiler to emit incorrect branch
code in some very large functions when generating position-independent code (-fpic) for O32
(-mabi=32) or O64 (-mabi=o64) ABIs.

Newlib update. The Newlib package has been updated to version 1.17.0, with additions from the
community CVS trunk as of 2009-02-24. This update provides new C99 wide-character functions;
POSIX regex functions; string-function performance improvements; an improved sprintf imple-
mentation that no longer requires I/O functions like _open, _write, and _close; and other bug
fixes and improvements. For more information, refer to the Newlib C Library and Math Library
manuals, and to the Newlib web site at http://sourceware.org/newlib/.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Compile-time error for some -march options. A bug has been fixed that caused the error
message: mips-sde-elf-gcc: switch '|march=octeon' does not start with
'-' to be reported. The bug affected programs compiled with the options -march=mips64,
-march=5k, -march=20k, -march=sb1 and -march=r71000.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This

56

Sourcery G++ Lite Release Notes

change eliminates a crash that occurred if none of the TEMP, TMP, or TMPDIR variables were set to
a suitable directory.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on MIPS ELF targets.
This includes processors for which Sourcery G++ Lite does not include appropriate run-time libraries.
These changes are intended to simplify processor and board selection. For the full list of boards
supported by CS3, refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

Internal compiler error with -fremove-local-statics. An internal compiler error that
occurred when using the -fremove-local-statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

A.1.15. Changes in Sourcery G++ Lite 4.3-81

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eq and xor_eq
were used in contexts where the preprocessor converts their names to strings.

GDB target extended-remote error. A bug in GDB has been fixed that caused target
extended-remote to report Remote failure reply: E01 if no remote program was
running.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "name"
outside of ELF segments for such binaries; the warning has now been fixed.

A.1.16. Changes in Sourcery G++ Lite 4.3-59

Setting breakpoints on Windows. A bug in GDB on Microsoft Windows hosts has been fixed.
The bug caused setting breakpoints on a source line by using the file's full path to fail with No
source file named filename.

Handling of out-of-range values by strtof . The strtof function now sets errno to
ERANGE when the input is not representable as a float, as required by the ISO C standard.

Printing casted values in GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the -a option) on Windows hosts has been fixed.

DSP support. The compiler now automatically enables support for the DSP ASE when the
-march option is used to specify a core in the 24KE, 34K, or 74K families. It is no longer necessary
to provide the -mdsp option explicitly.

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, the new
find command to search memory, the new /m (mixed source and assembly) option to the

57

Sourcery G++ Lite Release Notes

disassemble command, and the new macro define command to define C preprocessor
macros interactively.

PIE linking fix. A bug in the GCC -fpie and -fPIE options has been fixed. The bug caused
linker errors referring to R_MIPS_HI16.

Binutils support for DWARF Version 3. The addr2line command now supports binaries
containing DWARF 3 debugging information. The ld command can display error messages with
source locations for input files containing DWARF 3 debugging information.

GDB support for YAMON. GDB now supports debugging via the YAMON boot loader GDB
stub. Consult YAMON documentation for details on enabling the GDB stub.

GDB Support for MIPSsim on Windows. A bug in the GDB support for MIPSsim on Microsoft
Windows hosts has been fixed. The bug caused the target mdi command to fail with the error
Cannot find MIPSsim config file template: mipssim.cfg.

CodeSourcery Common Startup Code Sequence. Support for CS3, CodeSourcery's unified
startup scheme, has been added to this release. CS3 replaces the MIPS-provided MDI startup code
and linker scripts included in previous releases. Refer to Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence” for more information about CS3, including details about the boards
and linker scripts supported by this release. Note that the Malta board configuration is usable by
MIPSsim and the included GDB simulator as well as actual Malta hardware targets.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

FPU defaults. The -ffast-math option now causes subnormal numbers to be immediately
flushed to zero. It also sets the rounding mode to round-to-nearest.

Connecting to the target using a pipe. A bug in GDB's target remote | program
command has been fixed. When launching the specified program failed, the bug caused GDB to
crash, hang, or give a message Error: No Error.

Output files removed on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

Placing bss-like regions in load regions. The linker no longer issues an incorrect error message
when a bss-like section is placed at specific load region. The linker formerly incorrectly considered
the section as taking up space in the load region.

-mwarn-framesize=size option. GCC has a new command-line option,
-mwarn-framesize=size, which causes warnings if any function's stack frame exceeds the
given size. This option is useful when generating code for environments with limited or absent
stack, e.g., BIOS.

Newlib manuals. The documentation packaged with Sourcery G++ Lite now includes the
Newlib C Library and Math Library manuals.

GCC version 4.3.2. Sourcery G++ Lite for MIPS ELF is now based on GCC version 4.3.2. For
more information about changes from GCC version 4.2 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.3/changes.html.

Spurious GDB error message fixed. A spurious Current thread went away!? message
is no longer generated when using GDB to debug programs running on cores that do not support
hardware multi-threading. This problem was specific to the MDI target support in GDB.

58

Sourcery G++ Lite Release Notes

Unnecessary section removed. A linker bug that caused an unnecessary .rel.dyn section to
be placed in the executable has been fixed.

Linker bug fix for --gc-sections. A linker bug that caused certain linker-generated sections
to be incorrectly omitted from the executable when the --gc-sections option is used has been
fixed.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

Persistent remote server connections. A GDB bug has been fixed that caused the target
extended-remote command to fail to tell the remote server to make the connection persistent
across program invocations.

A.1.17. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for MIPS ELF, please refer
to the Getting Started guide packaged with those releases.

59

Sourcery G++ Lite Release Notes

Appendix B
Sourcery G++ Lite Licenses
Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary.This appendix
explains what licenses apply to your use of Sourcery G++ Lite.You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

60

B.1. Licenses for Sourcery G++ Lite Compon-
ents
The table below lists the major components of Sourcery G++ Lite for MIPS ELF and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Debugger

CodeSourcery LicenseCodeSourcery Common Startup
Code Sequence

BSD License. For the text of the license and a complete list of
copyright holders, see Section B.3.2, “Newlib”.

Newlib C Library

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.

Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-mips-sde-elf-examples subdirectory. These examples are not covered by
the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples are
provided by CodeSourcery as is with no warranty of any kind, including implied warranties of mer-
chantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

61

Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

B.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

3. Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, the CodeSourcery C Library (CSLIBC), and any
Sourcery G++ Debug Sprite. For a complete list, refer to the Getting Started Guide in-
cluded with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
CSLIBC and the CodeSourcery Common Startup Code Sequence (CS3). For a complete
list, refer to the Getting Started Guide included with the distribution.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

62

Sourcery G++ Lite Licenses

information for each “free software” or “open source” component is available in the relevant
source file.

7. CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

63

Sourcery G++ Lite Licenses

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

64

Sourcery G++ Lite Licenses

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery G++ Lite may include code based on work under the following copyright
and permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

65

Sourcery G++ Lite Licenses

 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

B.3.2. Newlib

The newlib subdirectory is a collection of software from several sources.

Each file may have its own copyright/license that is embedded in the source
file. Unless otherwise noted in the body of the source file(s), the following copyright
notices will apply to the contents of the newlib subdirectory:

(1) Red Hat Incorporated

Copyright (c) 1994-2007 Red Hat, Inc. All rights reserved.

This copyrighted material is made available to anyone wishing to use,
modify, copy, or redistribute it subject to the terms and conditions
of the BSD License. This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
including the implied warranties of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. A copy of this license is available at
http://www.opensource.org/licenses. Any Red Hat trademarks that are
incorporated in the source code or documentation are not subject to
the BSD License and may only be used or replicated with the express
permission of Red Hat, Inc.

(2) University of California, Berkeley

Copyright (c) 1981-2000 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 * Neither the name of the University nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

(3) David M. Gay (AT&T 1991, Lucent 1998)

The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting

66

Sourcery G++ Lite Licenses

documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

The author of this software is David M. Gay.

Copyright (C) 1998-2001 by Lucent Technologies
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Lucent or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

(4) Advanced Micro Devices

Copyright 1989, 1990 Advanced Micro Devices, Inc.

This software is the property of Advanced Micro Devices, Inc (AMD) which
specifically grants the user the right to modify, use and distribute this
software provided this notice is not removed or altered. All other rights
are reserved by AMD.

AMD MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
SOFTWARE. IN NO EVENT SHALL AMD BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING FROM THE FURNISHING, PERFORMANCE, OR
USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the 29K Technical Support Center at
800-29-29-AMD (800-292-9263) in the USA, or 0800-89-1131 in the UK, or
0031-11-1129 in Japan, toll free. The direct dial number is 512-462-4118.

Advanced Micro Devices, Inc.
29K Support Products
Mail Stop 573
5900 E. Ben White Blvd.
Austin, TX 78741
800-292-9263

(5) C.W. Sandmann

Copyright (C) 1993 C.W. Sandmann

This file may be freely distributed as long as the author's name remains.

(6) Eric Backus

(C) Copyright 1992 Eric Backus

This software may be used freely so long as this copyright notice is
left intact. There is no warrantee on this software.

67

Sourcery G++ Lite Licenses

(7) Sun Microsystems

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice is preserved.

(8) Hewlett Packard

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:
 permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(9) Hans-Peter Nilsson

Copyright (C) 2001 Hans-Peter Nilsson

Permission to use, copy, modify, and distribute this software is
freely granted, provided that the above copyright notice, this notice
and the following disclaimer are preserved with no changes.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

(10) Stephane Carrez (m68hc11-elf/m68hc12-elf targets only)

Copyright (C) 1999, 2000, 2001, 2002 Stephane Carrez (stcarrez@nerim.fr)

The authors hereby grant permission to use, copy, modify, distribute,
and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors
and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where
they apply.

(11) Christopher G. Demetriou

Copyright (c) 2001 Christopher G. Demetriou
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

68

Sourcery G++ Lite Licenses

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(12) SuperH, Inc.

Copyright 2002 SuperH, Inc. All rights reserved

This software is the property of SuperH, Inc (SuperH) which specifically
grants the user the right to modify, use and distribute this software
provided this notice is not removed or altered. All other rights are
reserved by SuperH.

SUPERH MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE. IN NO EVENT SHALL SUPERH BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM
THE FURNISHING, PERFORMANCE, OR USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the SuperH Support Center via
e-mail at softwaresupport@superh.com .

SuperH, Inc.
405 River Oaks Parkway
San Jose
CA 95134
USA

(13) Royal Institute of Technology

Copyright (c) 1999 Kungliga Tekniska Högskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

3. Neither the name of KTH nor the names of its contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY KTH AND ITS CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(14) Alexey Zelkin

Copyright (c) 2000, 2001 Alexey Zelkin <phantom@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

69

Sourcery G++ Lite Licenses

 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(15) Andrey A. Chernov

Copyright (C) 1997 by Andrey A. Chernov, Moscow, Russia.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(16) FreeBSD

Copyright (c) 1997-2002 FreeBSD Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(17) S. L. Moshier

Author: S. L. Moshier.

70

Sourcery G++ Lite Licenses

Copyright (c) 1984,2000 S.L. Moshier

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION
OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS
SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(18) Citrus Project

Copyright (c)1999 Citrus Project,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(19) Todd C. Miller

Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(20) DJ Delorie (i386)
Copyright (C) 1991 DJ Delorie
All rights reserved.

Redistribution and use in source and binary forms is permitted

71

Sourcery G++ Lite Licenses

provided that the above copyright notice and following paragraph are
duplicated in all such forms.

This file is distributed WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

(21) Free Software Foundation LGPL License (*-linux* targets only)

 Copyright (C) 1990-1999, 2000, 2001 Free Software Foundation, Inc.
 This file is part of the GNU C Library.
 Contributed by Mark Kettenis <kettenis@phys.uva.nl>, 1997.

 The GNU C Library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 The GNU C Library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with the GNU C Library; if not, write to the Free
 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA.

(22) Xavier Leroy LGPL License (i[3456]86-*-linux* targets only)

Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr)

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

(23) Intel (i960)

Copyright (c) 1993 Intel Corporation

Intel hereby grants you permission to copy, modify, and distribute this
software and its documentation. Intel grants this permission provided
that the above copyright notice appears in all copies and that both the
copyright notice and this permission notice appear in supporting
documentation. In addition, Intel grants this permission provided that
you prominently mark as "not part of the original" any modifications
made to this software or documentation, and that the name of Intel
Corporation not be used in advertising or publicity pertaining to
distribution of the software or the documentation without specific,
written prior permission.

Intel Corporation provides this AS IS, WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Intel makes no guarantee or
representations regarding the use of, or the results of the use of,
the software and documentation in terms of correctness, accuracy,
reliability, currentness, or otherwise; and you rely on the software,
documentation and results solely at your own risk.

IN NO EVENT SHALL INTEL BE LIABLE FOR ANY LOSS OF USE, LOSS OF BUSINESS,
LOSS OF PROFITS, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES
OF ANY KIND. IN NO EVENT SHALL INTEL'S TOTAL LIABILITY EXCEED THE SUM
PAID TO INTEL FOR THE PRODUCT LICENSED HEREUNDER.

(24) Hewlett-Packard (hppa targets only)

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

72

Sourcery G++ Lite Licenses

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:
 permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(25) Henry Spencer (only *-linux targets)

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
 software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
 explicit claim or by omission. Since few users ever read sources,
 credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
 misrepresented as being the original software. Since few users
 ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

(26) Mike Barcroft

Copyright (c) 2001 Mike Barcroft <mike@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(27) Konstantin Chuguev (--enable-newlib-iconv)

Copyright (c) 1999, 2000
 Konstantin Chuguev. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

73

Sourcery G++ Lite Licenses

 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

 iconv (Charset Conversion Library) v2.0

(28) Artem Bityuckiy (--enable-newlib-iconv)

Copyright (c) 2003, Artem B. Bityuckiy, SoftMine Corporation.
Rights transferred to Franklin Electronic Publishers.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(29) IBM, Sony, Toshiba (only spu-* targets)

 (C) Copyright 2001,2006,
 International Business Machines Corporation,
 Sony Computer Entertainment, Incorporated,
 Toshiba Corporation,

 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the names of the copyright holders nor the names of their
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

74

Sourcery G++ Lite Licenses

 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.

(30) - Alex Tatmanjants (targets using libc/posix)

 Copyright (c) 1995 Alex Tatmanjants <alex@elvisti.kiev.ua>
 at Electronni Visti IA, Kiev, Ukraine.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(31) - M. Warner Losh (targets using libc/posix)

 Copyright (c) 1998, M. Warner Losh <imp@freebsd.org>
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(32) - Andrey A. Chernov (targets using libc/posix)

 Copyright (C) 1996 by Andrey A. Chernov, Moscow, Russia.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND

75

Sourcery G++ Lite Licenses

 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(33) - Daniel Eischen (targets using libc/posix)

 Copyright (c) 2001 Daniel Eischen <deischen@FreeBSD.org>.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(34) - Jon Beniston (only lm32-* targets)

 Contributed by Jon Beniston <jon@beniston.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(35) - ARM Ltd (arm and thumb variant targets only)

 Copyright (c) 2009 ARM Ltd
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

76

Sourcery G++ Lite Licenses

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 3. The name of the company may not be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(36) - CodeSourcery, Inc.

Copyright (c) 2009 CodeSourcery, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of CodeSourcery nor the
 names of its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY CODESOURCERY, INC. ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CODESOURCERY BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(37) MIPS Technologies, Inc
/*
 * Copyright (c) 2009 MIPS Technologies, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright
 * notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with
 * the distribution.
 * * Neither the name of MIPS Technologies Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

77

Sourcery G++ Lite Licenses

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

78

Sourcery G++ Lite Licenses

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for MIPS ELF
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. CS3 Support
	3.4. Using Sourcery G++ with MIPS Boards
	3.5. Using Sourcery G++ with YAMON
	3.6. Profiling Support
	3.7. Using Flash Memory
	3.8. Additional Documentation

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications in the Simulator
	4.4. Running Applications from GDB
	4.4.1. Connecting to the GDB Simulator
	4.4.2. Connecting to the Sourcery G++ Debug Sprite
	4.4.3. Connecting to an External GDB Server
	4.4.4. Loading and Running Applications

	Chapter 5 CS3™: The CodeSourcery Common Startup Code Sequence
	5.1. Linker Scripts
	5.1.1. Program and Data Placement
	5.1.2. Hosting and Semihosting
	5.1.3. Specifying a Linker Script

	5.2. Program Startup and Termination
	5.2.1. The Hard Reset Phase
	5.2.2. The Assembly Initialization Phase
	5.2.3. The C Initialization Phase
	5.2.4. Arguments to main
	5.2.5. Program Termination

	5.3. Memory Layout
	5.3.1. Memory Regions and Program Sections
	5.3.2. Programmatic Access to the CS3 Memory Map
	5.3.3. Heap and Stack Placement

	5.4. Interrupt Vectors and Handlers
	5.4.1. MIPS ELF Interrupt Vector Implementation
	5.4.2. Writing Interrupt Handlers

	5.5. Supported Boards for MIPS ELF

	Chapter 6 Sourcery G++ Debug Sprite
	6.1. Probing for Debug Devices
	6.2. Debug Sprite Example
	6.3. Invoking Sourcery G++ Debug Sprite
	6.4. Sourcery G++ Debug Sprite Options
	6.5. MDI Devices
	6.6. Debugging a Remote Board
	6.7. Supported Board Files
	6.8. Board File Syntax

	Chapter 7 Next Steps with Sourcery G++
	7.1. Sourcery G++ Knowledge Base
	7.2. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for MIPS ELF
	A.1.1. Changes in Sourcery G++ Lite 4.4-226
	A.1.2. Changes in Sourcery G++ Lite 4.4-191
	A.1.3. Changes in Sourcery G++ Lite 4.4-147
	A.1.4. Changes in Sourcery G++ Lite 4.4-124
	A.1.5. Changes in Sourcery G++ Lite 4.4-111
	A.1.6. Changes in Sourcery G++ Lite 4.4-87
	A.1.7. Changes in Sourcery G++ Lite 4.4-58
	A.1.8. Changes in Sourcery G++ Lite 4.4-25
	A.1.9. Changes in Sourcery G++ Lite 4.3-221
	A.1.10. Changes in Sourcery G++ Lite 4.3-219
	A.1.11. Changes in Sourcery G++ Lite 4.3-199
	A.1.12. Changes in Sourcery G++ Lite 4.3-152
	A.1.13. Changes in Sourcery G++ Lite 4.3-147
	A.1.14. Changes in Sourcery G++ Lite 4.3-113
	A.1.15. Changes in Sourcery G++ Lite 4.3-81
	A.1.16. Changes in Sourcery G++ Lite 4.3-59
	A.1.17. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project
	B.3.2. Newlib

