The GNU OpenMP Implementation

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Funding Free Software”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e 1
1 Enabling OpenMP 3
2 Runtime Library Routines......... 5)
3 Environment Variables.......... 17
4 Thelibgomp ABL 21
5 Reporting Bugs......... ... i 27
GNU GENERAL PUBLIC LICENSE. o oL 29
GNU Free Documentation License 35
Funding Free Software i 43

Library Indexo 45

Table of Contents

Introduction

1 Enabling OpenMP

2 Runtime Library Routines

2.1 omp_get_active_level — Number of parallel regions...........)
2.2 omp_get_ancestor_thread_num — Ancestor thread ID..........)
2.3 omp_get_dynamic — Dynamic teams setting..................... 6
2.4 omp_get_level — Obtain the current nesting level 6
2.5 omp_set_max_active_levels — Maximal number of active regions
.. 6
2.6 omp_get_max_threads — Maximal number of threads of parallel
TEGIOIL . oot 7
2.7 omp_get_nested — Nested parallel regions...................... 7
2.8 omp_get_num_procs — Number of processors online............. 7
2.9 omp_get_num_threads — Size of the active team 8
2.10 omp_get_schedule — Obtain the runtime scheduling method... 8
2.11 omp_get_team_size — Number of threads in a team 8
2.12 omp_get_thread_limit — Maximal number of threads......... 9
2.13 omp_get_thread_num — Current thread ID............ 9
2.14 omp_in_parallel — Whether a parallel region is active........ 9
2.15 omp_set_dynamic — Enable/disable dynamic teams........... 10
2.16 omp_set_max_active_levels — Limits the number of active
parallel regions 10
2.17 omp_set_nested — Enable/disable nested parallel regions.. ... 10
2.18 omp_set_num_threads — Set upper team size limit............ 11
2.19 omp_set_schedule — Set the runtime scheduling method 11
2.20 omp_init_lock — Initialize simple lock 12
2.21 omp_set_lock — Wait for and set simple lock................. 12
2.22 omp_test_lock — Test and set simple lock if available 12
2.23 omp_unset_lock — Unset simple lock............ 13
2.24 omp_destroy_lock — Destroy simple lock..................... 13
2.25 omp_init_nest_lock — Initialize nested lock 13
2.26 omp_set_nest_lock — Wait for and set simple lock........... 14
2.27 omp_test_nest_lock — Test and set nested lock if available .. 14
2.28 omp_unset_nest_lock — Unset nested lock................... 14
2.29 omp_destroy_nest_lock — Destroy nested lock............... 15
2.30 omp_get_wtick — Get timer precision 15
2.31 omp_get_wtime — Elapsed wall clock time 15

iii

iv
3 Environment Variables........................ 17
3.1 OMP_DYNAMIC — Dynamic adjustment of threads................ 17
3.2 O0OMP_MAX_ACTIVE_LEVELS — Set the maximal number of nested
parallel regions 17
3.3 OMP_NESTED — Nested parallel regions.......................... 17
3.4 0OMP_NUM_THREADS — Specifies the number of threads to use..... 17
3.5 OMP_SCHEDULE — How threads are scheduled 18
3.6 0OMP_STACKSIZE — Set default thread stack size................. 18
3.7 OMP_THREAD_LIMIT — Set the maximal number of threads...... 18
3.8 O0OMP_WAIT_POLICY — How waiting threads are handled.......... 18
3.9 GOMP_CPU_AFFINITY — Bind threads to specific CPUs.......... 18
3.10 GOMP_STACKSIZE — Set default thread stack size 19
4 The libgomp ABI.............................. 21
4.1 TImplementing MASTER, construct............................. 21
4.2 Implementing CRITICAL constructoovon... 21
4.3 Implementing ATOMIC construct, 21
4.4 TImplementing FLUSH construct................... ..., 21
4.5 TImplementing BARRIER construct............................ 21
4.6 Implementing THREADPRIVATE construct 21
4.7 TImplementing PRIVATE clause...........ooooiiiia.. 22
4.8 Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and
COPYPRIVATE clausesot i 22
4.9 Implementing REDUCTION clause..................oooio. .. 22
4.10 Implementing PARALLEL construct 22
4.11 Implementing FOR construct 23
4.12 Implementing ORDERED construct.......................... 24
4.13 Implementing SECTIONS construct.......................... 24
4.14 TImplementing SINGLE construct............................. 24
5 Reporting Bugs................................ 27
GNU GENERAL PUBLIC LICENSE........... 29
Preambleo 29
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION . ..o e 30
Appendix: How to Apply These Terms to Your New Programs...... 34
GNU Free Documentation License............... 35
ADDENDUM: How to use this License for your documents 41
Funding Free Software............................ 43

Library Index.................. 45

GNU libgomp

Introduction 1

Introduction

This manual documents the usage of libgomp, the GNU implementation of the OpenMP
Application Programming Interface (API) for multi-platform shared-memory parallel pro-
gramming in C/C++ and Fortran.

http://www.openmp.org

Chapter 1: Enabling OpenMP 3

1 Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time flag -f openmp
must be specified. This enables the OpenMP directive #pragma omp in C/C++ and !$omp
directives in free form, c$omp, *$omp and !'$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form, for Fortran.
The flag also arranges for automatic linking of the OpenMP runtime library (Chapter 2
[Runtime Library Routines]|, page 5).

A complete description of all OpenMP directives accepted may be found in the OpenMP
Application Program Interface manual, version 3.0.

http://www.openmp.org
http://www.openmp.org

Chapter 2: Runtime Library Routines 5)

2 Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenMP specifications
in version 3.0. The routines are structured in following three parts:

Control threads, processors and the parallel environment.
Initialize, set, test, unset and destroy simple and nested locks.

Portable, thread-based, wall clock timer.

2.1 omp_get_active_level — Number of parallel regions

Description:
This function returns the nesting level for the active parallel blocks, which
enclose the calling call.

C/C++
Prototype: int omp_get_active_level();

Fortran:

Interface: integer omp_get_active_level()

See also: Section 2.4 [omp_get_level], page 6, Section 2.5 [omp_get_max_active_levels],
page 6, Section 2.16 [omp_set_max_active_levels], page 10

Reference: OpenMP specifications v3.0, section 3.2.19.

2.2 omp_get_ancestor_thread_num — Ancestor thread ID

Description:
This function returns the thread identification number for the given nesting
level of the current thread. For values of level outside zero to omp_get_level
-1 is returned; if level is omp_get_level the result is identical to omp_get_
thread_num.

C/C++
Prototype: int omp_get_ancestor_thread_num(int level);

Fortran:

Interface: integer omp_ancestor_thread_num(level)
integer level

See also: Section 2.4 [omp_get_level], page 6, Section 2.13 [omp_get_thread_num]|, page 9,
Section 2.11 [omp_get_team_size|, page 8

Reference: OpenMP specifications v3.0, section 3.2.17.

http://www.openmp.org/
http://www.openmp.org/

6 GNU libgomp

2.3 omp_get_dynamic — Dynamic teams setting

Description:
This function returns true if enabled, false otherwise. Here, true and false
represent their language-specific counterparts.

The dynamic team setting may be initialized at startup by the OMP_DYNAMIC
environment variable or at runtime using omp_set_dynamic. If undefined, dy-
namic adjustment is disabled by default.

C/C++:
Prototype: int omp_get_dynamic();

Fortran:
Interface: logical function omp_get_dynamic()

See also: Section 2.15 [omp-_set_dynamic|, page 10, Section 3.1 [OMP_DYNAMIC],
page 17

Reference: OpenMP specifications v3.0, section 3.2.8.

2.4 omp_get_level — Obtain the current nesting level

Description:
This function returns the nesting level for the parallel blocks, which enclose the
calling call.

C/C++
Prototype: int omp_get level();

Fortran:

Interface: integer omp_level()
See also: Section 2.1 [omp_get_active_level], page 5

Reference: OpenMP specifications v3.0, section 3.2.16.

2.5 omp_set_max_active_levels — Maximal number of active

regions

Description:
This function obtains the maximally allowed number of nested, active parallel
regions.

C/C++
Prototype: int omp_get_max_active_levels();

Fortran:
Interface: int omp_get_max_active_levels()

See also: Section 2.16 [omp_set_max_active_levels], page 10, Section 2.1

[omp_get_active_level], page 5

Reference: OpenMP specifications v3.0, section 3.2.14.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 7

2.6 omp_get_max_threads — Maximal number of threads of
parallel region

Description:
Return the maximal number of threads used for the current parallel region that
does not use the clause num_threads.

C/C++:
Prototype: int omp_get_max_threads();

Fortran:

Interface: integer function omp_get_max_threads()

See also: Section 2.18 [omp_set_num_threads], page 11, Section 2.15 [omp_set_dynamic],
page 10, Section 2.12 [omp_get_thread_limit], page 9

Reference: OpenMP specifications v3.0, section 3.2.3.

2.7 omp_get_nested — Nested parallel regions

Description:
This function returns true if nested parallel regions are enabled, false other-
wise. Here, true and false represent their language-specific counterparts.

Nested parallel regions may be initialized at startup by the OMP_NESTED envi-
ronment variable or at runtime using omp_set_nested. If undefined, nested
parallel regions are disabled by default.

C/C++:
Prototype: int omp_get_nested();

Fortran:

Interface: integer function omp_get_nested()
See also: Section 2.17 [omp_set_nested], page 10, Section 3.3 [OMP_NESTED], page 17

Reference: OpenMP specifications v3.0, section 3.2.10.

2.8 omp_get_num_procs — Number of processors online

Description:
Returns the number of processors online.

C/C++:

Prototype: int omp_get_num_procs();

Fortran:

Interface: integer function omp_get_num_procs()

Reference: OpenMP specifications v3.0, section 3.2.5.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

GNU libgomp

2.9 omp_get_num_threads — Size of the active team

Description:

C/C++:

Fortran:

See also:

The number of threads in the current team. In a sequential section of the
program omp_get_num_threads returns 1.

The default team size may be initialized at startup by the OMP_NUM_THREADS
environment variable. At runtime, the size of the current team may be set
either by the NUM_THREADS clause or by omp_set_num_threads. If none of the
above were used to define a specific value and OMP_DYNAMIC is disabled, one
thread per CPU online is used.

Prototype: int omp_get_num_threads();

Interface: integer function omp_get_num_threads()

Section 2.6 [omp_get_max_threads|, page 7, Section 2.18 [omp_set_num_threads]]
page 11, Section 3.4 [OMP_NUM_THREADS], page 17

Reference: OpenMP specifications v3.0, section 3.2.2.

2.10 omp_get_schedule — Obtain the runtime scheduling
method

Description:

C/C++

Fortran:

See also:

Obtain runtime the scheduling method. The kind argument will be set to the
value omp_sched_static, omp_sched_dynamic, opm_sched_guided or auto.
The second argument, modifier, is set to the chunk size.

Prototype: omp_schedule (omp_sched_t * kind, int *modifier);

Interface: subroutine omp_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier

Section 2.19 [omp_set_schedule|, page 11, Section 3.5 [OMP_SCHEDULE],
page 18

Reference: OpenMP specifications v3.0, section 3.2.12.

2.11 omp_get_team_size — Number of threads in a team

Description:

This function returns the number of threads in a thread team to which either
the current thread or its ancestor belongs. For values of level outside zero to
omp_get_level -1 is returned; if level is zero 1 is returned and for omp_get_
level the result is identical to omp_get_num_threads.

http://www.openmp.org/
http://www.openmp.org/

Chapter 2:

C/C++:

Fortran:

See also:

Reference:

Runtime Library Routines 9
Prototype: int omp_get_time_size(int level);
Interface: integer function omp_get_team_size(level)

integer level

Section 2.9 [omp_get_num_threads]|, page 8, Section 2.4 [omp_get_level], page 6,
Section 2.2 [omp_get_ancestor_thread_num|, page 5

OpenMP specifications v3.0, section 3.2.18.

2.12 omp_get_thread_limit — Maximal number of threads

Description:

C/C++:

Fortran:

See also:

Reference:

Return the maximal number of threads of the program.

Prototype: int omp_get_thread_limit();

Interface: integer function omp_get_thread_limit()

Section 2.6 [omp_get_max_threads], page 7, Section 3.7 [OMP_THREAD_LIMIT] }
page 18

OpenMP specifications v3.0, section 3.2.13.

2.13 omp_get_thread_num — Current thread ID

Description:

C/C++:

Fortran:

See also:

Reference:

Unique thread identification number within the current team. In a sequential
parts of the program, omp_get_thread_num always returns 0. In parallel regions
the return value varies from 0 to omp_get_num_threads-1 inclusive. The return
value of the master thread of a team is always 0.

Prototype: int omp_get_thread_num() ;

Interface: integer function omp_get_thread_num()

Section 2.9 [omp_get_num_threads], page 8, Section 2.2 [omp_get_ancestor_thread _numl],[j
page 5

OpenMP specifications v3.0, section 3.2.4.

2.14 omp_in_parallel — Whether a parallel region is active

Description:

This function returns true if currently running in parallel, false otherwise.
Here, true and false represent their language-specific counterparts.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

10 GNU libgomp

C/CH+:
Prototype: int omp_in_parallel();

Fortran:

Interface: logical function omp_in_parallel()

Reference: OpenMP specifications v3.0, section 3.2.6.

2.15 omp_set_dynamic — Enable/disable dynamic teams

Description:
Enable or disable the dynamic adjustment of the number of threads within a
team. The function takes the language-specific equivalent of true and false,
where true enables dynamic adjustment of team sizes and false disables it.

C/C+:
Prototype: void omp_set_dynamic(int);
Fortran:
Interface: subroutine omp_set_dynamic(set)
integer, intent(in) :: set

See also: Section 3.1 [OMP_DYNAMIC], page 17, Section 2.3 [omp_get_dynamic|, page 6
Reference: OpenMP specifications v3.0, section 3.2.7.

2.16 omp_set_max_active_levels — Limits the number of
active parallel regions

Description:
This function limits the maximally allowed number of nested, active parallel
regions.
C/C++
Prototype: omp_set_max_active_levels(int max_levels);
Fortran:
Interface: omp_max_active_levels(max_levels)
integer max_levels
See also: Section 2.5 [omp_get_max_active_levels], page 6, Section 2.1

[omp_get_active_level], page 5

Reference: OpenMP specifications v3.0, section 3.2.14.

2.17 omp_set_nested — Enable/disable nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The function takes the language-specific equivalent
of true and false, where true enables dynamic adjustment of team sizes and
false disables it.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 11

C/CH+:
Prototype: void omp_set_dynamic(int);
Fortran:
Interface: subroutine omp_set_dynamic(set)
integer, intent(in) :: set

See also: Section 3.3 [OMP_NESTED], page 17, Section 2.7 [omp_get_nested|, page 7
Reference: OpenMP specifications v3.0, section 3.2.9.

2.18 omp_set_num_threads — Set upper team size limit

Description:
Specifies the number of threads used by default in subsequent parallel sections,
if those do not specify a num_threads clause. The argument of omp_set_num_
threads shall be a positive integer.

C/C++:
Prototype: void omp_set_num_threads(int);
Fortran:
Interface: subroutine omp_set_num_threads(set)
integer, intent(in) :: set
See also: Section 3.4 [OMP_NUM_THREADS|, page 17, Section 2.9
[omp_get_num_threads], page 8, Section 2.6 [omp_get_max_threads],
page 7

Reference: OpenMP specifications v3.0, section 3.2.1.

2.19 omp_set_schedule — Set the runtime scheduling method

Description:
Sets the runtime scheduling method. The kind argument can have the value
omp_sched_static, omp_sched_dynamic, opm_sched_guided or omp_sched_
auto. Except for omp_sched_auto, the chunk size is set to the value of modifier
if positive or to the default value if zero or negative. For omp_sched_auto the
modifier argument is ignored.

C/C++
Prototype: int omp_schedule(omp_sched_t * kind, int *modifier);
Fortran:

Interface: subroutine omp_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier

See also: Section 2.10 [omp_get_schedule|, page 8 Section 3.5 [OMP_SCHEDULE],
page 18

Reference: OpenMP specifications v3.0, section 3.2.11.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

12 GNU libgomp

2.20 omp_init_lock — Initialize simple lock

Description:

Initialize a simple lock. After initialization, the lock is in an unlocked state.
C/C++:

Prototype: void omp_init_lock(omp_lock_t *lock);
Fortran:

Interface: subroutine omp_init_lock(lock)

integer (omp_lock_kind), intent(out) :: lock
See also: Section 2.24 [omp_destroy_lock|, page 13
Reference: OpenMP specifications v3.0, section 3.3.1.

2.21 omp_set_lock — Wait for and set simple lock

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_
lock. The calling thread is blocked until the lock is available. If the lock is
already held by the current thread, a deadlock occurs.

C/C++:
Prototype: void omp_set_lock(omp_lock_t *lock);

Fortran:
Interface: subroutine omp_set_lock(lock)
integer (omp_lock_kind), intent(out) :: lock

See also: Section 2.20 [omp-init_lock], page 12, Section 2.22 [omp-_test_lock], page 12,
Section 2.23 [omp_unset_lock], page 13

Reference: OpenMP specifications v3.0, section 3.3.3.

2.22 omp_test_lock — Test and set simple lock if available

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_
lock. Contrary to omp_set_lock, omp_test_lock does not block if the lock is
not available. This function returns true upon success, false otherwise. Here,
true and false represent their language-specific counterparts.

C/C++:
Prototype: int omp_test_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_test_lock(lock)
logical (omp_logical_kind) :: omp_test_lock
integer (omp_lock_kind), intent(out) :: lock

See also: Section 2.20 [omp_init_lock]|, page 12, Section 2.21 [omp_set_lock], page 12,
Section 2.21 [omp_set_lock], page 12

Reference: OpenMP specifications v3.0, section 3.3.5.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 13

2.23 omp_unset_lock — Unset simple lock

Description:
A simple lock about to be unset must have been locked by omp_set_lock or
omp_test_lock before. In addition, the lock must be held by the thread calling
omp_unset_lock. Then, the lock becomes unlocked. If one ore more threads
attempted to set the lock before, one of them is chosen to, again, set the lock

for itself.
C/C++:

Prototype: void omp_unset_lock(omp_lock_t *lock);
Fortran:

Interface: subroutine omp_unset_lock(lock)

integer (omp_lock_kind), intent(out) :: lock
See also: Section 2.21 [omp_set_lock], page 12, Section 2.22 [omp_test_lock], page 12
Reference: OpenMP specifications v3.0, section 3.3.4.

2.24 omp_destroy_lock — Destroy simple lock

Description:
Destroy a simple lock. In order to be destroyed, a simple lock must be in the
unlocked state.

C/C++:
Prototype: void omp_destroy_lock(omp_lock_t *);

Fortran:

Interface: subroutine omp_destroy_lock(lock)
integer (omp_lock_kind), intent(inout) :: lock

See also: Section 2.20 [omp_init_lock], page 12
Reference: OpenMP specifications v3.0, section 3.3.2.

2.25 omp_init_nest_lock — Initialize nested lock

Description:
Initialize a nested lock. After initialization, the lock is in an unlocked state and
the nesting count is set to zero.

C/C++:
Prototype: void omp_init_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_init_nest_lock(lock)
integer (omp_nest_lock_kind), intent(out) :: lock

See also: Section 2.29 [omp_destroy_nest_lock], page 15
Reference: OpenMP specifications v3.0, section 3.3.1.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

14 GNU libgomp

2.26 omp_set_nest_lock — Wait for and set simple lock

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_
nest_lock. The calling thread is blocked until the lock is available. If the
lock is already held by the current thread, the nesting count for the lock in

incremented.
C/C++:

Prototype: void omp_set_nest_lock(omp_nest_lock_t *lock);
Fortran:

Interface: subroutine omp_set_nest_lock(lock)

integer (omp_nest_lock_kind), intent(out) :: lock
See also: Section 2.25 [omp_init_nest_lock], page 13, Section 2.28 [omp_unset_nest_lock],
page 14
Reference: OpenMP specifications v3.0, section 3.3.3.

2.27 omp_test_nest_lock — Test and set nested lock if
available

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_
nest_lock. Contrary to omp_set_nest_lock, omp_test_nest_lock does not
block if the lock is not available. If the lock is already held by the current
thread, the new nesting count is returned. Otherwise, the return value equals

Z€ero.
C/C++:

Prototype: int omp_test_nest_lock(omp_nest_lock_t *lock);
Fortran:

Interface: integer function omp_test_nest_lock(lock)

integer (omp_integer_kind) :: omp_test_nest_lock
integer (omp_nest_lock_kind), intent(inout) :: lock

See also: Section 2.20 [omp_init_lock]|, page 12, Section 2.21 [omp_set_lock], page 12,
Section 2.21 [omp_set_lock], page 12

Reference: OpenMP specifications v3.0, section 3.3.5.

2.28 omp_unset_nest_lock — Unset nested lock

Description:
A nested lock about to be unset must have been locked by omp_set_nested_
lock or omp_test_nested_lock before. In addition, the lock must be held by
the thread calling omp_unset_nested_lock. If the nesting count drops to zero,
the lock becomes unlocked. If one ore more threads attempted to set the lock
before, one of them is chosen to, again, set the lock for itself.

http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 15

C/CH+:
Prototype: void omp_unset_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_unset_nest_lock(lock)
integer (omp_nest_lock_kind), intent(out) :: lock

See also: Section 2.26 [omp_set_nest_lock], page 14
Reference: OpenMP specifications v3.0, section 3.3.4.

2.29 omp_destroy_nest_lock — Destroy nested lock

Description:
Destroy a nested lock. In order to be destroyed, a nested lock must be in the
unlocked state and its nesting count must equal zero.

C/C++:
Prototype: void omp_destroy_nest_lock(omp_nest_lock_t *) ;
Fortran:
Interface: subroutine omp_destroy_nest_lock(lock)
integer (omp_nest_lock_kind), intent(inout) :: lock

See also: Section 2.20 [omp-_init_lock], page 12
Reference: OpenMP specifications v3.0, section 3.3.2.

2.30 omp_get_wtick — Get timer precision

Description:
Gets the timer precision, i.e., the number of seconds between two successive
clock ticks.

C/C++:
Prototype: double omp_get_wtick();
Fortran:
Interface: double precision function omp_get_wtick()

See also: Section 2.31 [omp_get_wtime], page 15
Reference: OpenMP specifications v3.0, section 3.4.2.

2.31 omp_get_wtime — Elapsed wall clock time

Description:
Elapsed wall clock time in seconds. The time is measured per thread, no guar-
antee can bee made that two distinct threads measure the same time. Time
is measured from some "time in the past". On POSIX compliant systems the
seconds since the Epoch (00:00:00 UTC, January 1, 1970) are returned.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

16 GNU libgomp

C/CH+:
Prototype: double omp_get_wtime();

Fortran:

Interface: double precision function omp_get_wtime ()
See also: Section 2.30 [omp_get_wtick]|, page 15
Reference: OpenMP specifications v3.0, section 3.4.1.

http://www.openmp.org/

Chapter 3: Environment Variables 17

3 Environment Variables

The variables OMP_DYNAMIC, OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS,
OMP_SCHEDULE, OMP_STACKSIZE,OMP_THREAD_LIMIT and OMP_WAIT_POLICY are defined by
section 4 of the OpenMP specifications in version 3.0, while GOMP_CPU_AFFINITY and
GOMP_STACKSIZE are GNU extensions.

3.1 OMP_DYNAMIC — Dynamic adjustment of threads

Description:
Enable or disable the dynamic adjustment of the number of threads within
a team. The value of this environment variable shall be TRUE or FALSE. If
undefined, dynamic adjustment is disabled by default.

See also: Section 2.15 [omp_set_dynamic|, page 10
Reference: OpenMP specifications v3.0, section 4.3

3.2 OMP_MAX_ACTIVE_LEVELS — Set the maximal number of
nested parallel regions

Description:
Specifies the initial value for the maximal number of nested parallel regions.
The value of this variable shall be positive integer. If undefined, the number of
active levels is unlimited.

See also: Section 2.16 [omp_set_max_active_levels], page 10

Reference: OpenMP specifications v3.0, section 4.7

3.3 OMP_NESTED — Nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The value of this environment variable shall be
TRUE or FALSE. If undefined, nested parallel regions are disabled by default.

See also: Section 2.17 [omp_set_nested], page 10
Reference: OpenMP specifications v3.0, section 4.4

3.4 OMP_NUM_THREADS — Specifies the number of threads to use

Description:
Specifies the default number of threads to use in parallel regions. The value of
this variable shall be positive integer. If undefined one thread per CPU online
is used.

See also: Section 2.18 [omp_set_num_threads|, page 11

Reference: OpenMP specifications v3.0, section 4.2

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

18 GNU libgomp

3.5 OMP_SCHEDULE — How threads are scheduled

Description:
Allows to specify schedule type and chunk size. The value of the variable
shall have the form: typel,chunk] where type is one of static, dynamic,
guided or auto The optional chunk size shall be a positive integer. If undefined,
dynamic scheduling and a chunk size of 1 is used.

See also: Section 2.19 [omp_set_schedule], page 11
Reference: OpenMP specifications v3.0, sections 2.5.1 and 4.1

3.6 OMP_STACKSIZE — Set default thread stack size

Description:
Set the default thread stack size in kilobytes, unless the number is suffixed by B,
K, M or G, in which case the size is, respectively, in bytes, kilobytes, megabytes or
gigabytes. This is different from pthread_attr_setstacksize which gets the
number of bytes as an argument. If the stacksize can not be set due to system
constraints, an error is reported and the initial stacksize is left unchanged. If
undefined, the stack size is system dependent.

Reference: OpenMP specifications v3.0, sections 4.5

3.7 OMP_THREAD_LIMIT — Set the maximal number of threads

Description:
Specifies the number of threads to use for the whole program. The value of this
variable shall be positive integer. If undefined, the number of threads is not
limited.

See also: Section 3.4 [OMP_NUM_THREADS], page 17 Section 2.12
[omp_get_thread_limit], page 9

Reference: OpenMP specifications v3.0, section 4.8

3.8 OMP_WAIT_POLICY — How waiting threads are handled

Description:
Specifies whether waiting threads should be active or passive. If the value is
PASSIVE, waiting threads should not consume CPU power while waiting; while
the value is ACTIVE specifies that they should.

Reference: OpenMP specifications v3.0, sections 4.6

3.9 GOMP_CPU_AFFINITY — Bind threads to specific CPUs

Description:
Binds threads to specific CPUs. The variable should contain a space- or comma-
separated list of CPUs. This list may contain different kind of entries: either
single CPU numbers in any order, a range of CPUs (M-N) or a range with

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 3: Environment Variables 19

some stride (M-N:S). CPU numbers are zero based. For example, GOMP_CPU_
AFFINITY="0 3 1-2 4-15:2" will bind the initial thread to CPU 0, the second
to CPU 3, the third to CPU 1, the fourth to CPU 2, the fifth to CPU 4, the
sixth through tenth to CPUs 6, 8, 10, 12, and 14 respectively and then start
assigning back from the beginning of the list. GOMP_CPU_AFFINITY=0 binds all
threads to CPU 0.

There is no GNU OpenMP library routine to determine whether a CPU affinity
specification is in effect. As a workaround, language-specific library functions,
e.g., getenv in C or GET_ENVIRONMENT_VARIABLE in Fortran, may be used to
query the setting of the GOMP_CPU_AFFINITY environment variable. A defined
CPU affinity on startup cannot be changed or disabled during the runtime of
the application.

If this environment variable is omitted, the host system will handle the assign-
ment of threads to CPUs.

3.10 GOMP_STACKSIZE — Set default thread stack size

Description:

See also:

Set the default thread stack size in kilobytes. This is different from pthread_
attr_setstacksize which gets the number of bytes as an argument. If the
stacksize can not be set due to system constraints, an error is reported and
the initial stacksize is left unchanged. If undefined, the stack size is system
dependent.

Section 3.10 [GOMP_STACKSIZE], page 19

Reference: GCC Patches Mailinglist, GCC Patches Mailinglist

http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html

Chapter 4: The libgomp ABI 21

4 The libgomp ABI

The following sections present notes on the external ABI as presented by libgomp. Only
maintainers should need them.

4.1 Implementing MASTER construct

if (omp_get_thread_num () == 0)
block

Alternately, we generate two copies of the parallel subfunction and only include this in
the version run by the master thread. Surely that’s not worthwhile though...

4.2 Implementing CRITICAL construct

Without a specified name,

void GOMP_critical_start (void);
void GOMP_critical_end (void);

so that we don’t get COPY relocations from libgomp to the main application.

With a specified name, use omp_set_lock and omp_unset_lock with name being trans-
formed into a variable declared like

omp_lock_t gomp_critical_user_<name> __attribute__((common))

Ideally the ABI would specify that all zero is a valid unlocked state, and so we wouldn’t
actually need to initialize this at startup.

4.3 Implementing ATOMIC construct

The target should implement the __sync builtins.
Failing that we could add

void GOMP_atomic_enter (void)
void GOMP_atomic_exit (void)

which reuses the regular lock code, but with yet another lock object private to the library.

4.4 Implementing FLUSH construct

Expands to the __sync_synchronize builtin.

4.5 Implementing BARRIER construct

void GOMP_barrier (void)

4.6 Implementing THREADPRIVATE construct

In _most_ cases we can map this directly to __thread. Except that OMP allows constructors
for C++ objects. We can either refuse to support this (how often is it used?) or we can
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions to the main pthreads library.
Failing that, we can have a set of entry points to register ctor functions to be called.

22 GNU libgomp

4.7 Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent of a PARALLEL block, the
variable becomes a local variable in the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new automatic variable within
the current function. This preserves the semantic of new variable creation.

4.8 Implementing FIRSTPRIVATE LASTPRIVATE
COPYIN and COPYPRIVATE clauses

Seems simple enough for PARALLEL blocks. Create a private struct for communicating
between parent and subfunction. In the parent, copy in values for scalar and "small" structs;
copy in addresses for others TREE_ADDRESSABLE types. In the subfunction, copy the
value into the local variable.

Not clear at all what to do with bare FOR or SECTION blocks. The only thing I can
figure is that we do something like
#pragma omp for firstprivate(x) lastprivate(y)
for (int i = 0; i < n; ++i)
body;
which becomes
{
int x = %, y;

// for stuff

if (i == n)
y =3
}

where the "x=x" and "y=y" assignments actually have different uids for the two vari-
ables, i.e. not something you could write directly in C. Presumably this only makes sense
if the "outer" x and y are global variables.

COPYPRIVATE would work the same way, except the structure broadcast would have
to happen via SINGLE machinery instead.

4.9 Implementing REDUCTION clause

The private struct mentioned in the previous section should have a pointer to an array of
the type of the variable, indexed by the thread’s team_id. The thread stores its final value
into the array, and after the barrier the master thread iterates over the array to collect the
values.

4.10 Implementing PARALLEL construct

#pragma omp parallel
{

body;
}

becomes

void subfunction (void *data)

{

Chapter 4: The libgomp ABI 23

use data;
body;
}

setup data;

GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);

GOMP_parallel_end ();

void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
The FN argument is the subfunction to be run in parallel.

The DATA argument is a pointer to a structure used to communicate data in and out
of the subfunction, as discussed above with respect to FIRSTPRIVATE et al.

The NUM_THREADS argument is 1 if an IF clause is present and false, or the value of
the NUM_THREADS clause, if present, or 0.

The function needs to create the appropriate number of threads and/or launch them
from the dock. It needs to create the team structure and assign team ids.
void GOMP_parallel_end (void)

Tears down the team and returns us to the previous omp_in_parallel() state.

4.11 Implementing FOR construct

#pragma omp parallel for
for (i = 1b; i <= ub; i++)
body;

becomes

void subfunction (void *data)
{
long _sO, _eO0;
while (GOMP_loop_static_next (&_sO, &_e0))

{
long _el = _e0, i;
for (i = _s0; i < _el; i++)
body;
}
GOMP_loop_end_nowait ();

}

GOMP_parallel_loop_static (subfunction, NULL, O, 1lb, ub+1, 1, 0);
subfunction (NULL);
GOMP_parallel_end ();

#pragma omp for schedule(runtime)
for (i = 0; i < nj; i++)
body;

becomes
{

long i, _sO, _e0;
if (GOMP_loop_runtime_start (0, n, 1, &_sO, &_e0))
do {
long _el = _e0;
for (i = _s0, i < _e0; i++)
body;
} while (GOMP_loop_runtime_next (&_sO, _&e0));

24 GNU libgomp

GOMP_loop_end Q) ;
}

Note that while it looks like there is trickyness to propagating a non-constant STEP,
there isn’t really. We’re explicitly allowed to evaluate it as many times as we want, and
any variables involved should automatically be handled as PRIVATE or SHARED like any
other variables. So the expression should remain evaluable in the subfunction. We can also
pull it into a local variable if we like, but since its supposed to remain unchanged, we can
also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be able to
get away with no work-sharing context at all, since we can simply perform the arithmetic
directly in each thread to divide up the iterations. Which would mean that we wouldn’t
need to call any of these routines.

There are separate routines for handling loops with an ORDERED clause. Bookkeeping
for that is non-trivial...

4.12 Implementing ORDERED construct

void GOMP_ordered_start (void)
void GOMP_ordered_end (void)

4.13 Implementing SECTIONS construct
A block as

#pragma omp sections
{
#pragma omp section
stmt1l;
#pragma omp section
stmt2;
#pragma omp section
stmt3;
}

becomes

for (i = GOMP_sections_start (3); i !'= 0; i = GOMP_sections_next ())
switch (i)
{
case 1:
stmti;
break;
case 2:
stmt2;
break;
case 3:
stmt3;
break;
}
GOMP_barrier ();

4.14 Implementing SINGLE construct
A block like

Chapter 4: The libgomp ABI

#pragma omp single

body;
}
becomes
if (GOMP_single_start ())
body;
GOMP_barrier ();
while

#pragma omp single copyprivate(x)
body;

becomes

datap = GOMP_single_copy_start ();
if (datap == NULL)

{
body;
data.x = x;
GOMP_single_copy_end (&data);
}
else

x = datap->x;
GOMP_barrier ();

25

Chapter 5: Reporting Bugs 27

5 Reporting Bugs

Bugs in the GNU OpenMP implementation should be reported via bugzilla. In all cases,
please add "openmp" to the keywords field in the bug report.

http://gcc.gnu.org/bugzilla/

GNU GENERAL PUBLIC LICENSE 29

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

30 GNU libgomp

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

GNU GENERAL PUBLIC LICENSE 31

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

32

6.

10.

GNU libgomp

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

GNU GENERAL PUBLIC LICENSE 33

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

34 GNU libgomp

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

GNU Free Documentation License 35

GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

36

GNU libgomp

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

GNU Free Documentation License 37

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

38

o

N.

0.

GNU libgomp

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

GNU Free Documentation License 39

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

40

10.

GNU libgomp

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

GNU Free Documentation License 41

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Funding Free Software 43

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright (©) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

Library Index

Library Index

E

Environment Variable

F

FDL, GNU Free Documentation License

45

Implementation specific setting......... 17, 18, 19

Introduction

	Introduction
	Enabling OpenMP
	Runtime Library Routines
	omp_get_active_level -- Number of parallel regions
	omp_get_ancestor_thread_num -- Ancestor thread ID
	omp_get_dynamic -- Dynamic teams setting
	omp_get_level -- Obtain the current nesting level
	omp_set_max_active_levels -- Maximal number of active regions
	omp_get_max_threads -- Maximal number of threads of parallel region
	omp_get_nested -- Nested parallel regions
	omp_get_num_procs -- Number of processors online
	omp_get_num_threads -- Size of the active team
	omp_get_schedule -- Obtain the runtime scheduling method
	omp_get_team_size -- Number of threads in a team
	omp_get_thread_limit -- Maximal number of threads
	omp_get_thread_num -- Current thread ID
	omp_in_parallel -- Whether a parallel region is active
	omp_set_dynamic -- Enable/disable dynamic teams
	omp_set_max_active_levels -- Limits the number of active parallel regions
	omp_set_nested -- Enable/disable nested parallel regions
	omp_set_num_threads -- Set upper team size limit
	omp_set_schedule -- Set the runtime scheduling method
	omp_init_lock -- Initialize simple lock
	omp_set_lock -- Wait for and set simple lock
	omp_test_lock -- Test and set simple lock if available
	omp_unset_lock -- Unset simple lock
	omp_destroy_lock -- Destroy simple lock
	omp_init_nest_lock -- Initialize nested lock
	omp_set_nest_lock -- Wait for and set simple lock
	omp_test_nest_lock -- Test and set nested lock if available
	omp_unset_nest_lock -- Unset nested lock
	omp_destroy_nest_lock -- Destroy nested lock
	omp_get_wtick -- Get timer precision
	omp_get_wtime -- Elapsed wall clock time

	Environment Variables
	OMP_DYNAMIC -- Dynamic adjustment of threads
	OMP_MAX_ACTIVE_LEVELS -- Set the maximal number of nested parallel regions
	OMP_NESTED -- Nested parallel regions
	OMP_NUM_THREADS -- Specifies the number of threads to use
	OMP_SCHEDULE -- How threads are scheduled
	OMP_STACKSIZE -- Set default thread stack size
	OMP_THREAD_LIMIT -- Set the maximal number of threads
	OMP_WAIT_POLICY -- How waiting threads are handled
	GOMP_CPU_AFFINITY -- Bind threads to specific CPUs
	GOMP_STACKSIZE -- Set default thread stack size

	The libgomp ABI
	Implementing MASTER construct
	Implementing CRITICAL construct
	Implementing ATOMIC construct
	Implementing FLUSH construct
	Implementing BARRIER construct
	Implementing THREADPRIVATE construct
	Implementing PRIVATE clause
	Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
	Implementing REDUCTION clause
	Implementing PARALLEL construct
	Implementing FOR construct
	Implementing ORDERED construct
	Implementing SECTIONS construct
	Implementing SINGLE construct

	Reporting Bugs
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Funding Free Software
	Library Index

